THE VALIDITY OF CLINICAL TESTS FOR
CRANIOVERTEBRAL INSTABILITY

PETER GRANT OSMOTHERLY
B.Sc, Grad Dip Phty, MMedSc (Clinical Epidemiology)

Thesis presented for the degree of
Doctor of Philosophy
The University of Newcastle
May 2013
STATEMENT OF ORIGINALITY

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan or photocopying subject to the provisions of the Copyright Act 1968.

Signed ______________________________

Date ______________________
TABLE OF CONTENTS

PAGE

STATEMENT OF ORIGINALITY ... i

LIST OF FIGURES .. xii

LIST OF TABLES ... xvii

LIST OF ABBREVIATIONS .. xix

ABSTRACT ... xxi

PUBLICATIONS AND PRESENTATIONS ARISING FROM THE WORK IN THIS THESIS .. xxiv

ACKNOWLEDGMENTS ... xxxi

CHAPTER 1: INTRODUCTION ... 1

1.1 Convention (consensual validation) ... 2

1.2 Biological basis .. 3

1.3 Empirical proof ... 3

1.4 Structure of this thesis ... 4

CHAPTER 2: WHAT IS CRANIOVERTEBRAL INSTABILITY? 7

2.1 Concepts of spinal stability and instability............................... 7

2.2 The pathogenesis of craniovertebral instability 14

2.2.1 Congenital causes ... 14

 Developmental anatomy of the craniovertebral region 14

 Anomalies of the craniovertebral region 16

2.2.2 Inflammatory causes...20

2.2.3 Traumatic causes...29

Fractures associated with craniovertebral instability.................................29

Ligament lesions in the absence of fracture............40

Considerations in paediatric trauma.....................50

2.3 Incidence and prevalence of craniovertebral instability.....55

2.3.1 Prevalence of craniovertebral instability associated

with congenital conditions..55

2.3.2 Prevalence of craniovertebral instability in

rheumatoid arthritis patients...57

2.3.3 Incidence and prevalence of craniovertebral

instability associated with trauma...............................60

2.4 Clinical presentation of craniovertebral instability........61

CHAPTER 3: THE KNOWLEDGE AND USE OF CRANIOVERTEBRAL

INSTABILITY TESTING BY AUSTRALIAN PHYSIOTHERAPISTS70

3.1 Introduction and aims ...70

3.2 Methods...72

3.2.1 Ethical approval..72

3.2.2 Study sample..72

3.2.3 Study design..73
4.4.2 Atlanto-occipital ligaments 119

Anterior atlanto-occipital ligament 120
Posterior atlanto-occipital ligament 121

4.4.3 Accessory atlanto-axial ligaments 121

4.4.4 Anterior atlanto-dental ligament 122

CHAPTER 5: DESCRIPTIVE ANATOMY OF THE LIGAMENTS OF
THE CRANIOVERTEBRAL REGION 123

5.1 Introduction and aims 123

5.2 Dissection material 124

5.2.1 Cadaveric material 124

5.2.2 Other materials 124

5.3 Dissection methods 126

5.4 Results of the anatomical study 128

5.4.1 Tectorial membrane 128

5.4.2 Transverse, ascending and descending portions
or the cruciform ligament 137

5.4.3 Alar ligaments 141

5.5 Discussion of the results of the anatomical study 147

5.5.1 Tectorial membrane 147

5.5.2 Transverse, ascending and descending portions
or the cruciform ligament 152

5.5.3 Alar ligaments 155

5.6 Implications for the validity of clinical stress testing 158
5.6.1 Tectorial membrane .. 158
5.6.2 Cruciform and transverse ligaments 159
5.6.3 Alar ligaments .. 159

CHAPTER 6: RADIOLOGICAL ANATOMY OF THE CRANIOVERTEBRAL LIGAMENTS162
6.1 General radiographic approach..............................162
6.2 Imaging of the alar ligaments164
 6.2.1 Conventional radiography 164
 6.2.2 Computed tomography (CT) 165
 6.2.3 Magnetic resonance imaging (MRI) 166
6.3 Imaging of the transverse ligament of the atlas177
 6.3.1 Conventional radiography 177
 6.3.2 Computed tomography 178
 6.3.3 Magnetic resonance imaging 179
6.4 Imaging of the tectorial membrane181
 6.4.1 Computed tomography 181
 6.4.2 Magnetic resonance imaging 181

CHAPTER 7: AN EXAMINATION OF THE DEEP CRANIOVERTEBRAL LIGAMENTS USING HIGH RESOLUTION AND CLINICAL RESOLUTION MAGNETIC RESONANCE IMAGING183
7.1 Introduction and aims ...183
7.2 Methods ..186
7.2.1 Cadaveric material .. 186
7.2.2 Preparation of cadaveric material 186
7.2.3 Imaging of specimens .. 187
7.2.4 Analysis of quantitative morphometric data 190
7.2.5 Confirmatory dissection 190
7.3 Results ... 193
7.3.1 Study specimens .. 193
7.3.2 High resolution imaging – 4.6-Tesla 193
 Alar ligaments .. 193
 Ascending and descending cruciform ligaments .. 207
 Transverse ligament ... 207
 Tectorial membrane ... 213
7.3.3 Clinical resolution imaging – 3-Tesla 217
 Alar ligaments .. 217
 Transverse and cruciform ligaments 227
 Tectorial membrane ... 237
7.3.4 Consistency of measured anatomical features 242
7.2.5 Dissection of imaged specimens 245
7.4 Discussion .. 250
7.4.1 Comparison of the findings of high resolution
 imaging of the craniocervical ligaments with
 their macrostructure demonstrated during fine
 dissection ... 250
7.4.2 Clinical resolution imaging 256
Assessed clarity of images ..256

Comparison of ligament structure between acquisition sequences ..260

7.4.3 Implications for the validity of clinical stress testing...263

7.4.4 Implications for further studies assessing the validity of clinical stress tests of the craniovertebral ligaments using MRI..........................265

CHAPTER 8: BIOMECHANICS OF THE CRANIOVERTEBRAL SEGMENTS IN RELATION TO LIGAMENTOUS FUNCTION ..268

8.1 Descriptions of occipito-atlanto-axial biomechanics in published literature ..268

8.1.1 Occipito-atlantal movement268

8.1.2 Atlanto-axial movement275

8.1.3 Coupling during occipito-atlanto-axial motion 279

Coupling of movement between lateral flexion and axial rotation ..279

Coupling of movements between axial rotation and movements in the sagittal plane283

8.2 Transverse ligament related biomechanics 283

8.3 Alar ligament related biomechanics 286

8.3.1 Side-bending stress test for the alar ligaments 288

8.3.2 Rotation stress test for the alar ligaments 293

8.3.3 The alar ligaments in craniocervical flexion 301

8.4 Tectorial membrane related biomechanics 303
CHAPTER 9: LITERATURE REVIEW OF THE CLINICAL TESTS FOR CRANIOVERTEBRAL INSTABILITY ... 309

9.1 Tests for the transverse ligament .. 309

9.1.1 Sharp-Purser test .. 309

9.1.2 Anterior shear test ... 315

9.1.3 Palate sign ... 318

9.1.4 “Clunk” test ... 320

9.1.5 Posterior-anterior glide of the axis 320

9.2 Tests for the alar ligaments .. 321

9.2.1 Side-bending stress test 321

9.2.2 Rotation stress test ... 324

9.2.3 Passive intervertebral movement – occipito-atlanto-axial rotation ... 326

9.2.4 Lateral translation stress test 328

9.3 Tests for the tectorial membrane 331

9.3.1 Distraction test ... 331

9.3.2 Distraction in upper cervical flexion 332

9.3.3 Upper cervical flexion test 333

9.3.4 Ventral horizontal translation between occipito-atlas-axis .. 334

CHAPTER 10: CLINICAL EXAMINATION OF SELECTED CRANIOVERTEBRAL INSTABILITY STRESS TESTS USING MAGNETIC RESONANCE IMAGING336

10.1 Introduction and aims ... 336
10.3.4 Distraction test for the tectorial membrane 357

Basion-dental interval ... 358

Direct measurement of tectorial membrane length ... 358

10.4 Discussion of the results of ligament testing 360

10.4.1 Alar ligament stress tests .. 361

10.4.2 Anterior shear test for the transverse ligament ... 364

10.4.3 Distraction test for the tectorial membrane 365

10.5 Conclusion .. 366

CHAPTER 11: SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH........368

REFERENCES ..376

APPENDIX A JOURNAL PUBLICATIONS RELATED TO WORK PRESENTED IN THIS THESIS...399

APPENDIX B ETHICS APPROVALS FOR STUDIES CONDUCTED AT THE UNIVERSITY OF NEWCASTLE ..426

APPENDIX C QUESTIONNAIRE DEVELOPED FOR THE SURVEY “THE KNOWLEDGE AND USE OF CRANIOVERTEBRAL INSTABILITY TESTING BY AUSTRALIAN PHYSIOTHERAPISTS”..............................432
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Functioning of the spinal stability system</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Dysfunction of the spinal stability system</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Types of occipital condyle fracture</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Classification of odontoid fractures</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>A “cock robin” torticollis suggested to be indicative of atlantoaxial instability</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Instability testing in the presence of disorders prone to craniovertebral instability</td>
<td>83</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Response to the question “When should CVI tests be used in clinical practice?”</td>
<td>87</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Differing representations of the tectorial membrane in anatomical texts</td>
<td>104</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Exposed tectorial membrane ready for fine dissection following preparation of the specimen</td>
<td>127</td>
</tr>
<tr>
<td>Figure 5.2a</td>
<td>The superficial layer of the tectorial membrane</td>
<td>129</td>
</tr>
<tr>
<td>Figure 5.2b</td>
<td>The division of bands of the superficial layer of the tectorial membrane</td>
<td>129</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Three bands of the deep layer of the tectorial membrane</td>
<td>131</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>The three bands of the deep layer of the tectorial membrane outlined</td>
<td>133</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Lateral bands of the deep layer of the tectorial membrane</td>
<td>134</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>The deep craniocervical ligaments</td>
<td>138</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>The transverse ligament shown to attach into the medial aspect of the lateral atlantoaxial joint</td>
<td>140</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>The alar ligaments arising from the odontoid process</td>
<td>141</td>
</tr>
</tbody>
</table>
Figure 5.9 Band of posterior fibres of the alar ligament traversing from occiput to occiput with minimal attachment to the odontoid process ...144

Figure 5.10 Transverse bands of the alar ligament ...145

Figure 6.1a Basion-axial interval ..163

Figure 6.1b Basion dental interval ...163

Figure 6.2 Appearance of the alar ligaments on CT imaging166

Figure 6.3 Coronal T1-weighted spin-echo MR image with arrows showing delineated and symmetrical alar ligaments oriented caudocranially ..169

Figure 6.4 Coronal T1-weighted spin-echo MR image showing delineated asymmetrical alar ligaments oriented craniocaudally on the right and caudocranially on the left ...169

Figure 6.5 Normal appearance of the alar ligaments on MRI171

Figure 6.6 Axial CT section demonstrating the appearance of the transverse ligament ...178

Figure 6.7 Transverse ligament arching around the dens showing low signal intensity and delineated borders ...180

Figure 7.1 Course of the alar ligaments in coronal section194

Figure 7.2 Attachment of the alar ligaments on to the odontoid process195

Figure 7.3 Blending of the inferior fibres of the alar ligament into the medial aspect of the atlantooccipital joint ...197

Figure 7.4 Calculation of the angle of orientation of the alar ligaments with respect to the midline of the odontoid process ..198

Figure 7.5 Sagital views demonstrating the alar ligaments in cross section ..202

Figure 7.6 The alar ligaments viewed in axial section ..203

Figure 7.7 Fibres of the alar ligament blending into the medial aspect of the atlanto-occipital joint ...204
Figure 7.8 Fibres of the alar ligaments traversing the odontoid process205
Figure 7.9 Ascending cruciform ligament in sagittal view.............................208
Figure 7.10 The transverse ligament viewed in cross section in midline sagittal view ...210
Figure 7.11 The transverse ligament in axial view ..211
Figure 7.12 Layering of the tectorial membrane viewed in sagittal section214
Figure 7.13 Axial view demonstrating the attachment of the tectorial membrane onto the posterior aspect of the vertebral body of the axis ..216
Figure 7.14 The lateral aspects of the tectorial membrane demonstrating increased thickness in the antero-posterior dimension either side of the midline ..216
Figure 7.15 Coronal view of alar ligaments with T2-weighted space spin echo sequence ...219
Figure 7.16 Axial view of alar ligaments with T2-weighted space spin echo sequence ...219
Figure 7.17 The alar ligaments in coronal view using a T1-weighted turbo spin echo sequence ...222
Figure 7.18 The alar ligaments in axial view as seen using a proton density-weighted 2D turbo spin echo sequence ..225
Figure 7.19 The transverse ligament in sagittal view using a T2 space 3D spin echo sequence ...228
Figure 7.20 The transverse ligament in axial view using a T2 space 3D spin echo sequence ...229
Figure 7.21 The transverse ligament of the atlas in axial view using a T1-weighted turbo spin echo sequence ...230
Figure 7.22 The transverse ligament of the atlas in axial view using a T1-weighted turbo spin echo sequence ...231
Figure 7.23 The transverse ligament in sagittal view using a Proton density-weighted 2D turbo spin echo sequence ..233
Figure 7.24 The transverse ligament in axial view extending between the atlantal tubercles seen using a Proton density-weighted 2D turbo spin echo sequence .. 234

Figure 8.1 Right lateral views of flexion and extension of the atlanto-occipital joints .. 270

Figure 8.2 Instantaneous centre of motion of atlanto-occipital motion in the sagittal plane ... 272

Figure 8.3 Right lateral views of axial rotation of the atlanto-occipital joint .. 274

Figure 8.4 Lateral view of the right lateral atlantoaxial joint illustrating forward and backward displacement 276

Figure 8.5 Atlantoaxial left rotation .. 278

Figure 8.6 Lateral bending from occiput to axis .. 280

Figure 8.7 Rotation from occiput to axis ... 282

Figure 8.8 Alar ligaments during occipito-atlanto-axial lateral flexion 292

Figure 8.9 Alar ligaments during occipito-atlanto-axial rotation 295

Figure 8.10 Caudal view of the modelling of rotation of the occiput around the odontoid process ... 298

Figure 9.1 The Sharp-Purser test .. 311

Figure 9.2 Alternate position for Sharp-Purser test 312

Figure 9.3 The anterior shear test .. 317

Figure 9.4 The palate sign ... 319

Figure 9.5 Side-bending stress test for the alar ligament 323

Figure 9.6 The rotation stress test for the alar ligament 325

Figure 9.7 The occipito-atlanto-axial rotation test 327

Figure 9.8 The lateral translation stress test ... 330

Figure 9.9 Distraction test for the tectorial membrane 332
Figure 9.10 Ventral horizontal translation between occiput-atlas-axis...........335
Figure 10.1a Subject positioned for testing in the MRI tunnel......................341
Figure 10.1b Subject position in standard neck coil for testing during imaging ...341
Figure 10.2 Direct and indirect techniques to assess the effectiveness of the tests in tensioning the alar ligaments ..346
Figure 10.3 Direct and indirect techniques to assess the anterior shear test347
Figure 10.4 The basion-dental interval comprising a line joining the basion to the closest point on the tip of the dens on lateral view349
Figure 10.5 Direct and indirect measurement techniques for the tectorial membrane ..350
Figure 10.6 The alar ligaments following imposition of the right side-bending stress test ...354
LIST OF TABLES

Table 3.1 Characteristics of survey respondents ..76
Table 3.2 Respondent clinical characteristics and background knowledge of craniovertebral instability...79
Table 3.3 Responses provided for definition of the term ‘instability’ in the upper cervical spine ..80
Table 3.4 Detection of craniovertebral instability ..82
Table 3.5 Self report of knowledge and use of craniovertebral stress tests....85
Table 5.1 Characteristics of the cadaveric specimens125
Table 5.2 Features of the superficial layer of the tectorial membrane136
Table 5.3 Features of the deep layer of the tectorial membrane..............136
Table 5.4 Features of the alar ligaments...146
Table 6.1 Summary of published MRI descriptions of the alar ligaments ...172
Table 7.1 Characteristics of the cadaveric specimens examined using MRI...192
Table 7.2 Measurements and observations obtained from 4.6 tesla MRI examination of the alar ligaments in coronal view199
Table 7.3 Measurements and observations obtained from 4.6 tesla MRI examination of the alar ligaments in axial view206
Table 7.4 Measurements and observations obtained from 4.6 tesla MRI examination of the transverse ligaments in sagittal and axial views ...212
Table 7.5 Measurements and observations of the alar ligaments obtained at 3-Tesla using T2 space 3D spin echo acquisition..........................220
Table 7.6 Measurements and observations of the alar ligaments obtained at 3-Tesla using T1 turbo spin echo acquisition223
Table 7.7 Measurements and observations of the alar ligaments obtained at 3-Tesla acquired using a proton density-weighted 2D turbo spin echo sequence ...226
Table 7.8 Measurements and observations for the transverse ligaments of each specimen obtained in sagittal section using all three acquisition sequences ...235

Table 7.9 Measurements and observations for the transverse ligaments of each specimen obtained in axial section using all three acquisition sequences ...236

Table 7.10 Measurements and observations for the tectorial membrane of each specimen obtained using all three acquisition sequences.....239

Table 7.11 Comparison of the measurements of the alar ligaments taken from each specimen for each acquisition sequence.........................243

Table 7.12 Comparison of the measurements of the transverse ligaments taken from each specimen for each acquisition sequence244

Table 7.13 Observations of the alar ligaments from dissection of the previously imaged specimens...247

Table 10.1 Indirect and direct methods measurements of ligament length for left and right alar ligaments ...353

Table 10.2 Summary of findings following the examination of alar ligament stress testing...355

Table 10.3 Intraclass correlation coefficients for the left-right difference in alar ligament length estimates ...356

Table 10.4 Assessment of the reliability of individual measurements of the transverse ligament and the tectorial membrane359
LIST OF ABBREVIATIONS

3D three dimensional
AAD atlantoaxial dislocation
AAS atlantoaxial subluxation
ADI atlantodental interval
A-P anterior-posterior
BDI basion dental interval
C1 first cervical vertebra
C2 second cervical vertebra
C3 third cervical vertebra
C6 sixth cervical vertebra
C7 seventh cervical vertebra
CI confidence interval
CSA cross sectional area
CT computed tomography
CV cervical vertebra
CVI cranovertebral instability
DICOM Digital Imaging and Communications in Medicine
FOV field of view
ICC intraclass correlation coefficient
mm millimetres
MPA Musculoskeletal Physiotherapy Australia
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MVA</td>
<td>motor vehicle accident</td>
</tr>
<tr>
<td>NA</td>
<td>not available</td>
</tr>
<tr>
<td>O</td>
<td>occiput</td>
</tr>
<tr>
<td>PADI</td>
<td>posterior atlantodental interval</td>
</tr>
<tr>
<td>PAL</td>
<td>posterior axial line</td>
</tr>
<tr>
<td>PD</td>
<td>proton density</td>
</tr>
<tr>
<td>PG</td>
<td>post-graduate</td>
</tr>
<tr>
<td>PLL</td>
<td>posterior longitudinal ligament</td>
</tr>
<tr>
<td>PPIVM</td>
<td>passive physiological intervertebral movement</td>
</tr>
<tr>
<td>r</td>
<td>Pearson’s correlation coefficient</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>spin echo</td>
</tr>
<tr>
<td>SLE</td>
<td>systemic lupus erythematosus</td>
</tr>
<tr>
<td>T</td>
<td>Tesla</td>
</tr>
<tr>
<td>TE</td>
<td>echo time</td>
</tr>
<tr>
<td>TR</td>
<td>repetition time</td>
</tr>
<tr>
<td>TSE</td>
<td>turbo spin echo</td>
</tr>
<tr>
<td>WAD</td>
<td>whiplash associated disorder</td>
</tr>
</tbody>
</table>
ABSTRACT

The work contained in this thesis encompasses four studies to examine the validity of clinical testing for clinical instability of the craniovertebral region. Validity was explored through the utilisation and exploration of the constructs of convention, biological plausibility and empirical proof.

Consensual validity for clinical testing was explored through a survey of knowledge and attitudes to instability testing in a nationwide survey involving 1528 Australian physiotherapists. Details of respondents’ understanding of the concept of instability, potential clinical presentations of patients with segmental hypermobility of the upper cervical spine, knowledge of published clinical stress tests, attitudes toward performing these clinical tests and inclusion of craniovertebral testing procedures in clinical guidelines were all assessed. On the basis of the information returned, it appears that the level of knowledge and understanding of these disorders, their clinical presentation, assessment and their risk factors is low. Understanding of the clinical testing manoeuvres was also poor, with the majority of respondents never applying these tests clinically. Completion of post-graduate coursework in musculoskeletal physiotherapy clearly improved exposure to these concepts and tests in respondents, but did not significantly affect use of testing for screening prior to treatment of the upper cervical spine overall. Consensual validity for clinical testing of craniovertebral instability must be considered to be low based upon the absence of agreement of the existence, presentation and assessment of the disorder.
Biological plausibility of testing was explored through examination of the morphology of
the ligaments of the craniovertebral region. Observations made during the dissection of
11 cadaveric specimens were mostly in accordance with descriptions of the anatomy
upon which the clinical test procedures have been based. However, the tectorial
membrane was observed to be a more complex structure than has previously been
understood with its fibre arrangement suggesting a role as a potentially limiting structure
to axial rotation of the upper cervical segments. The existence of the previously reported
‘atlantal’ portion of the alar ligaments was also challenged. It was not observed in any
specimen examined and the presence of these bands of tissue in any individual should be
considered an anatomical variant. Overall, the gross morphology of the craniovertebral
ligaments observed being consistent with the basis of the clinical tests confers face
validity on the testing procedures.

The biological basis for testing was further explored using magnetic resonance imaging
of six specimens at high (4.6T) and clinical (3.0T) definition acquisitions. Observations
were confirmed by dissection and the accuracy of measurements and observations
assessed. Again, the gross morphology was consistent with the structural assumptions
underpinning the clinical tests, thus enhancing their face validity. Clinical acquisitions
were compared using three different sequences to assess the optimal acquisition sequence
to be used in subsequent patient studies. Proton density-weighted sequences were found
to be superior in identification, delineation and measurement of the ligaments of this
region.
Empirical proof that clinical tests are capable of influencing the ligaments of this region was addressed in the final study. The upper cervical spines of 16 healthy volunteers were imaged using MRI in both neutral and end-range clinical test positions. Ligaments were assessed using both direct measurement and indirect estimates of bony displacement. Statistically significant changes in ligament dimension were demonstrated for the ligaments in all tests examined. Direct evidence that the ligament may be influenced in a predictable manner through the imposition of clinical tests provides a strong case for the establishment of construct validity for each of these described clinical tests.

Through utilising the three axioms of convention, biological plausibility and empirical proof, a number of aspects of the validity of clinically testing the craniovertebral region for instability have been assessed. Whilst the consensual validity of testing appears poor, the case for face validity and construct validity for the ligament stress tests is strong suggesting that further research is warranted which may now potentially involve individuals with demonstrable instabilities of this region.
PUBLICATIONS AND PRESENTATIONS ARISING FROM THE WORK IN THIS THESIS

Parts of the work presented in this thesis have been published and/or presented in the following forums:

PUBLISHED PAPERS

PUBLISHED ABSTRACTS

CONFERENCE PRESENTATIONS - ORAL

Osmotherly PG, Mercer SR, Rivett DA. (2006). The tectorial membrane; a multilayered structure. *3rd Annual Scientific Meeting of the Australian and New Zealand Association of Clinical Anatomists*. La Trobe University, Melbourne, Australia

xxvii

Osmotherly PG. (2009). Craniocervical stability testing; current research and clinical application. *Mini conference of combined Head and Neck, Shoulder, Arm Research group*

CONFERENCE PRESENTATIONS - POSTER

ACKNOWLEDGMENTS

I would like to extend my sincere thanks and appreciation to my supervisor, Professor Darren Rivett for his guidance of the research and in the completion of this thesis.

I would also like to thank Associate Professor Susan Mercer, formerly of The University of Queensland, for her guidance and training in anatomical investigation, providing access to the anatomy facilities at The University of Queensland and her generosity during my frequent periods in Brisbane completing this work.

My appreciation to Dr Gary Cowin, Centre for Advanced Imaging, The University of Queensland for his work on producing the magnetic resonance images of cadaveric specimens described in Chapter 7.

I would also like to express my gratitude to Conjoint Associate Professor Lindsay Rowe, Division of Radiology, Hunter New England Imaging, for facilitating access to magnetic resonance imaging facilities at John Hunter Hospital and providing expert knowledge on the acquisition, interpretation and measurement of images reported in Chapter 10.

Thank you to Musculoskeletal Physiotherapy Australia for distributing to their membership the knowledge and attitudes survey reported in Chapter 3.