MINIMISING RISK FACTORS FOR CERVICAL SPINE MANIPULATION

Lucy Caroline Orton Thomas

Dip Phys, Grad Dip App Sc (Manip Phty), MMedSc (Physiotherapy)

Thesis submitted for the degree of
Doctor of Philosophy

The University of Newcastle, Australia

January 2013
This is to certify that the thesis entitled “Minimising risk factors for cervical spine manipulation” submitted by Lucy Thomas in fulfilment of the requirements for the degree of Doctor of Philosophy is in a form ready for examination.

Signed _____________________________

Date ____________________

Lucy Thomas
School of Health Sciences,
Faculty of Health,
The University of Newcastle.
DECLARATION

I, **Lucy Thomas**, hereby declare that the work contained within this thesis is my own and has not been submitted to any other university or institution as a part or a whole requirement for any higher degree. I certify that the work embodied in this thesis contains published papers of which I am the lead author. I have included a written statement, endorsed by my supervisor, attesting to my contribution to these joint publications.

In addition, ethical approval from the University of Newcastle Human Research Ethics Committee and Hunter New England Research Ethics Committee was granted for the four studies presented in this thesis. Participants were required to read a participant information statement and informed consent was gained prior to data collection. Ethical approvals for all studies are included in Appendix A.

I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject the provisions of the Copyright Act 1968.

Name **LUCY THOMAS**

Signed ________________

Date ________________
I, Professor Darren Rivett, attest that Research Higher Degree candidate Lucy Thomas was the lead author of the following publications:

Name PROFESSOR DARREN RIVETT
Signed ____________________
Date_______________________
ACKNOWLEDGMENTS

I would like to extend my sincere thanks and appreciation to my supervisors, Professor Darren Rivett and Professor Christopher Levi for their enthusiasm, encouragement and guidance for the research and in the completion of this thesis, and to Associate Professor Louise Ada for her advice on the overall structure of the thesis. I would also like to thank Professor John Attia, Associate Professor Mark Parsons, Dr Grant Bateman, Associate Professor Peter Stanwell, Mr Peter Osmotherly and Mr Todd Alchin for their assistance with the studies contained in the thesis.

I would like to acknowledge and thank my son James Thomas for his assistance with the radiological figures in the Chapters 4 and 6 and thank my husband Peter and children Caroline and Patrick for their support and encouragement throughout the long process of study to complete this thesis.

Finally, I would like to dedicate the thesis to my father John Orton who always encouraged me to ‘try harder’ and never to give up.
PUBLICATIONS

Parts of the work presented in this thesis have been published or presented in the following forums:

PUBLISHED PAPERS

PUBLISHED ABSTRACTS

CONFERENCES AND OTHER INVITED PRESENTATIONS

TABLE OF CONTENTS

PAGE

STATEMENT OF AUTHORSHIP ... i
DECLARATION ... ii
SUPERVISOR STATEMENT .. iii
ACKNOWLEDGMENTS .. iv
PUBLICATIONS AND PRESENTATIONS ... v
LIST OF FIGURES .. xii
LIST OF TABLES .. xiv
ABSTRACT ... xvi
CHAPTER 1: INTRODUCTION ... 1
 RATIONALE OF THE THESIS .. 2
 Aims ... 4
 Hypotheses ... 5
 OUTLINE OF THE THESIS ... 5
 Studies ... 6
 Scope/De-limitations .. 7
 Significance .. 8
CHAPTER 2: LITERATURE REVIEW .. 9
 Cervical manipulation ... 11
 Craniocervical arteries ... 15
 Craniocervical arterial dissection ... 28
 Aetiology of craniocervical arterial dissection 29
 Risk factors for craniocervical arterial dissection 30

-viii-
LIST OF FIGURES

Figure 2.1	Blood supply to the brain and Circle of Willis	16
Figure 2.2	The course of the vertebral artery showing the relations of the four segments	18
Figure 2.3	3 D computed tomography surface rendered image of the lateral segments of the vertebral artery	20
Figure 2.4	Circle of Willis showing the branches of the craniocervical arteries	24
Figure 2.5	Course of the internal carotid artery	25
Figure 2.6	Segments (C1-7) of the internal carotid artery, delineated on a magnetic resonance image of the head	26
Figure 2.7	Distribution of the internal carotid artery	27
Figure 2.8	A primary intramural hematoma of the basilar artery	40
Figure 2.9	Dissection of carotid artery with evidence of intramural haematoma showing lumen narrowing	40
Figure 2.10	Diagram showing the different arterial territories of the brain	42
Figure 2.11	Radiological features of dissection	56
Figure 4.1	Design of the study	102
Figure 4.2	Schematic representation of brain showing pooled topography of brainstem and hemispheric infarction of posterior circulation dissections	111
Figure 4.3	Schematic representation of brain showing pooled topography of brainstem and hemispheric infarction of anterior circulation dissections	112
Figure 5.1	Design of the study	129
Figure 5.2	Distribution of headache and neck pain in participants with a) vertebral artery dissection, and b) internal carotid artery dissection	145
Figure 6.1	Design of the study	164
Figure 6.2 Participant position for a) distraction with right rotation, b) left rotation localised to C1-2 .. 168

Figure 6.3 Participant positioned in scanner showing head and neck coil ... 169

Figure 6.4 Surface rendered 3-D multi-planar reformatted image of the carotid and vertebral arteries showing a) normal vascular anatomy, and b) hypoplastic right vertebral artery 173

Figure 6.5 Box plots showing average flow volume for experimental neck positions in each artery .. 176

Figure 6.6 Individual parallel plots of flow volume in vertebral arteries and internal carotid arteries ... 179
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Absolute contraindications to cervical manipulation</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Characteristics of participants</td>
<td>83</td>
</tr>
<tr>
<td>3.2a</td>
<td>Risk factors in dissection and control participants</td>
<td>84</td>
</tr>
<tr>
<td>3.2b</td>
<td>Risk factors identified in dissection and control participants: sub-group analysis of radiologically confirmed dissection participants</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>Types of minor mechanical trauma described in participant history</td>
<td>85</td>
</tr>
<tr>
<td>3.4a</td>
<td>Cardiovascular risk factors identified in dissection and control participants</td>
<td>86</td>
</tr>
<tr>
<td>3.4b</td>
<td>Cardiovascular risk factors for dissection and control participants: Subgroup analysis of confirmed dissection cases</td>
<td>87</td>
</tr>
<tr>
<td>3.5a</td>
<td>Reported symptoms in the dissection and control participants</td>
<td>87</td>
</tr>
<tr>
<td>3.5b</td>
<td>Reported clinical signs in dissection and control participants</td>
<td>88</td>
</tr>
<tr>
<td>3.6</td>
<td>Stroke outcome</td>
<td>89</td>
</tr>
<tr>
<td>4.1</td>
<td>Characteristics of dissection and control participants</td>
<td>107</td>
</tr>
<tr>
<td>4.2</td>
<td>Location of dissection in dissection participants</td>
<td>108</td>
</tr>
<tr>
<td>4.3</td>
<td>Arterial wall abnormalities in dissection participants</td>
<td>109</td>
</tr>
<tr>
<td>4.4</td>
<td>Location of infarct in dissection participants</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>Risk factors for dissection and control participants</td>
<td>113</td>
</tr>
<tr>
<td>5.1</td>
<td>Characteristics of participants</td>
<td>138</td>
</tr>
<tr>
<td>5.2</td>
<td>Risk factors for dissection and control participants</td>
<td>139</td>
</tr>
<tr>
<td>5.3</td>
<td>Types of mechanical trauma experienced by dissection participants</td>
<td>141</td>
</tr>
</tbody>
</table>
Table 5.4 Number of participants presenting with each clinical feature ... 144

Table 5.5 Number of participants with ‘early warning’ signs and symptoms .. 148

Table 6.1 Participant characteristics ... 172

Table 6.2 Mean average blood flow volume in the craniocervical arteries for each neck position and the mean difference between each neck position and neutral .. 174

Table 6.3 Total blood inflow to the brain ... 180
ABSTRACT

The overall aim of the work presented in this thesis was to examine the risk factors for cervical manipulation and make recommendations for clinical practice. Cervical spine manipulation is a manual technique used for the treatment of neck pain and associated headache. The most commonly described serious neurovascular adverse event following cervical manipulation is dissection of one or more of the craniocervical arteries, which comprise the main blood supply to the brain. Current pre-manipulative screening guidelines are limited in their ability to identify patients at risk of adverse events or screen patients for signs of brain ischaemia. The aim of the thesis is to guide practitioners in minimising the risk of neurovascular events associated with cervical manipulation, and this was approached in two ways. Firstly, by identifying risk factors and early presenting clinical features associated with craniocervical arterial dissection and secondly, by identifying neck positions inherent in common manipulative techniques which might have a greater impact on craniocervical arterial blood flow.

The thesis comprises four studies investigating the risk factors for adverse neurovascular events following neck manipulation and the presenting features of arterial dissection. Study one examined the risk factors and clinical features of craniocervical arterial dissection in a retrospective medical records review and found that mechanical trauma, vascular anomaly and less so recent infection were associated with dissection, and that typical cardiovascular risk factors were generally less important. Study two examined the radiological features of craniocervical arterial dissection and their association with risk factors, and found that mechanical...
trauma and vascular anomaly were associated with a higher incidence of cerebral infarction. Study three examined the risk factors and clinical features of dissection in a prospective group of patients. Preliminary findings are reported that mechanical trauma was associated with dissection, and that 70% of patients reported ‘early warning signs’ of brain ischaemia. The final study investigated the effects of various head and neck positions commonly utilised in manual therapy on blood flow in the craniocervical arteries and consequent blood supply to the brain. The study found that selected neck positions did not have any significant effect on blood flow compared with the neutral position, and that combined end-range rotation and distraction positions of the head and neck did not have any greater effect on blood flow than localised segmental rotation positions.

There are specific recommendations which can be made as a result of these findings. Clinicians should screen patients presenting with headache or neck pain for a recent history of trauma or recent infection, and closely examine for transient features of brain ischaemia. If potential ischaemic features are identified, prompt referral for medical assessment should be made. Generally cardiovascular risk factors do not appear to be useful indicators of risk of adverse events following manual therapy of the neck, and probably do not need to be considered contraindications to manual therapy applied to the neck. Neck positions commonly used in manual therapy practice such as end-range head and neck rotation and/or distraction do not appear to be any more hazardous in terms of their effects on craniocervical arterial blood flow than techniques performed in positions in neutral or with more localised segmental rotation. The positions for manipulative techniques commonly used in clinical practice therefore do not appear to be inherently dangerous, although the thrust
component was not evaluated. The findings also do not support the utility of measurement of blood flow in a single vessel such as the vertebral artery during pre-manipulative screening to identify deficits in brain perfusion imposed by some neck positions. Isolated measurement of vertebral artery blood flow is therefore not supported for inclusion into clinical screening guidelines.