INVESTIGATION OF MAGNETIC RESONANCE IMAGING FOR PROSTATE RADIATION THERAPY PLANNING WITH CONE-BEAM CT-BASED IMAGE GUIDED RADIATION THERAPY

Jonathan Andrew Lambert
BSc (Photonics) (Hons)

Submitted for the consideration of the degree of Doctor of Philosophy.

September 2012
The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library**, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

** Unless an Embargo has been approved for a determined period.

(Signed):

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom, and under what auspices.

(Signed):
ACKNOWLEDGMENT OF COLLABORATION

All the research presented here was performed at or in collaboration with the Calvary Mater Hospital, Newcastle. All the MR images used in this study were obtained at Maitland Private Hospital. The NRRD to DICOM conversions (?) and pseudo CTs were created by Jason Dowling at the Australian E-Health Centre, CSIRO, Brisbane. The custom-made, pelvic shaped phantoms were manufactured at Specialised Wholesale & Plastics, Lambton, NSW to a design and specifications developed by myself.
ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor, Prof Greer, who has put a lot of time and effort into helping me and making this project what it is, partly by answering every question I had and providing plenty of feedback. I would also like to thank my co-supervisor, Prof Menk, who also put in a lot of time into the project and provided plenty of tips on the administrative side of things, as well as areas such as organisation, preparation, and note taking.

Jackie Patterson and Joel Parker both provided a lot of assistance and put in a lot of hard work in all aspects of the research. Jackie addressed just about every problem that I had with Pinnacle or Eclipse and taught me a lot about both systems. Joel put in a lot of work setting up plans, importing data (particularly into Eclipse), and helping design the MR phantoms.

Many people, including Dr Gupta, Prof Denham, Dr Capp, Dr Wratten, and Sarah Hauville, created contours and plans on various images sets. The CT and MR images also had to be registered in many cases, and I appreciate the work of everyone who contributed to that effort.

The staff of the Calvary Mater Hospital in general deserve to be acknowledged for the general assistance they all provided, especially Dr Ostwald and Sharon Oultram for assistance with the planning systems, and Joan Hatton for assistance with the cone beam aspects of the research. Likewise, the staff at the University of Newcastle also deserve recognition, especially the staff in Mathematical & Physical Sciences including Prof O’Connor, Rae Pease, Vicki Gumbleton, and Cheryl James, for funding, resources, desk space, general administrative help, and much more.

Dr Dowling and Dr Salvado (Australian E-Health Centre, CSIRO, Brisbane) provided much technical input and assistance in many areas of the project, including assistance in developing a DICOM anonymisation process for Eclipse patient data, assistance and collaboration with MR bone segmentation, the generation of the pseudo-CTs, assistance in investigating a method of converting Pinnacle data formats to DICOM, and countless more general collaboration and assistance. The staff of Wollongong Hospital also independently assisted with the Pinnacle to DICOM conversion.

Cynthia Hughes and the staff of the Maitland Private Hospital were always helpful when it came to the use and operation of their MR scanner. Peter Lau & Kristen Fisher also provided general assistance with the MR work, and Kara & Alex took me along to see the MR scanning procedure for prostate patients.

Work with the MR phantoms would not have been possible without the help of Gary Bradbery (Specialised Wholesale & Plastics) for assistance with the phantom manufacture, and Nik Rees for assistance with the phantom design and technical drawings. Tamarra Malloy provided invaluable assistance during the DRR comparisons and acquisition of the CBCT images.

Many forums have been held in which there is an opportunity to provide feedback in one way or another. I would like to thank all those who made suggestions and asked questions at the EPSM-ABEC 2008, 2009, and 2010 conferences in Christchurch, NZ (17th - 20th November, 2008 at the Christchurch convention Centre), Canberra (8th - 12th November, 2009 at the Hotel Realm), and Melbourne (6th - 9th December, 2010 at the Melbourne Cricket Ground), all those who made suggestions at the MedPhys08 and MedPhys09 Student Symposia in Sydney (5th December, 2008 and 4th December, 2009 at the University of Sydney), and all those
who asked questions, commented, and made suggestions at the Medical Physics Research Day 2009 in Sydney, Australia (18th June, 2009, at Liverpool Hospital). This feedback has helped to shape and improve the project.

I also wish to acknowledge the several sources of funding for this research. This work was partially funded by Cancer Council NSW Grant Number RG 07-06, a Varian Research grant for the Eclipse research workstation (awarded to P Greer, S Oultram, C Wratten: “Radiation therapy planning infrastructure”), a Hunter Medical Research Institute research higher degree support grant in medical physics supported by Neville Sawyer (“MM Sawyer PhD Support for Medical Physicist – Investigation of Magnetic Resonance Imaging For Prostate Radiation Therapy Planning”, HMRI 10-13), and an Australian Postgraduate Award.

Finally, I would like to thank my family and friends (and in particular Jess Pritchard for proof reading a draft) for all their encouragement and support over the duration of this project.
TABLE OF CONTENTS

Abstract ... 1

1. Introduction and Theory .. 3
 1.1 – Background and Aims of the Thesis ... 3
 1.1.1 – Aims of the Thesis ... 3
 1.1.2 – Format of the Thesis .. 4
 1.1.3 – Publications and Contributions .. 4
 1.1.4 – Conference Presentations .. 6
 1.2 – Anatomy of the Prostate .. 7
 1.3 – Prostate Cancer ... 8
 1.3.1 – Prostate Cancer Statistics .. 8
 1.3.2 – Location and Staging of Prostate Cancer .. 9
 1.4 – External Beam Radiotherapy (EBRT) .. 10
 1.4.1 – Overview of the Radiotherapy Process .. 10
 1.4.2 – Treatment Planning .. 12
 1.4.3 – Dose Calculation ... 17
 1.4.4 – Radiotherapy Treatment of Prostate Cancer .. 19
 1.5 – Image Guided Radiation Therapy and Adaptive Radiotherapy 24

2. Literature Review ... 29
 2.1 – Tissue Segmentation ... 29
 2.2 – MR Distortions ... 33
 2.2.1 – General Distortion Correction ... 33
 2.2.2 – Correction of Motion Artefacts .. 36
 2.3 – MR-Based DRRs and Bulk Electron Density Planning 37
 2.4 – CT Atlases and Possible Image Registration Techniques 44
 2.5 – Image Guided Radiotherapy (IGRT) and Adaptive Radiotherapy (ART) 46
 2.6 – Electron Density Information in Cone Beam CT Images 48
 2.7 – Summary ... 51

3. MR Uniformity Measurements ... 52
 3.1 – Overview .. 52
 3.2 – Methods .. 52
 3.3 – Results .. 57
 3.4 – Discussion ... 62
4. Planning With Bulk Electron Densities .. 64

4.1 – Overview ... 64

4.2 – Methods ... 64

4.2.1 – Patient Acquisition and Planning .. 64

4.2.2 – Calculation of Bulk Electron Density Values .. 70

4.2.3 – Comparison of CT and MR Plans With Bulk Electron Densities
(Assigned to Manually Defined Bone Contours) to the Gold-Standard Full-Density CT Plan ... 72

4.2.4 – Point Dose Comparisons .. 73

4.2.5 – Dose Volume Histogram (DVH) Comparisons 73

4.2.6 – Dose Distribution Comparison .. 74

4.2.7 – Contour, Organ Volume, Source to Surface Distance (SSD), and Skin Marker Comparisons ... 75

4.2.8 – Dose Comparisons For Bulk Density Plans Generated With Automatic Bone Contours to Bulk-Density Plans Generated With Manually Contoured Bone ... 78

4.2.9 – Digitally Reconstructed Radiographs (DRRs) ... 78

4.3 – Results ... 79

4.3.1 – Calculation of Bulk Electron Density Values .. 79

4.3.2 – Point Dose Comparisons .. 80

4.3.3 – Dose Volume Histogram (DVH) Comparisons 83

4.3.4 – Dose Distributions Comparison .. 90

4.3.5 – Contour, Source to Surface Distance (SSD), and Skin Marker Measurements ... 95

4.3.6 – Dose Comparisons For Bulk Density Plans Generated With Automatic Bone Contours to Bulk-Density Plans Generated With Manually Contoured Bone ... 102

4.3.7 – Digitally Reconstructed Radiographs (DRRs) ... 104

4.4 – Discussion .. 109

4.4.1 – Calculation of Bulk Electron Density Values .. 109

4.4.2 – Point Dose Comparisons .. 111

4.4.3 – Dose Volume Histogram (DVH) Comparisons 114

4.4.4 – Dose Distribution Comparison .. 116
ABSTRACT

One of the most common methods of treating prostate cancer is to use external beam radiotherapy, which currently involves the use of both computed tomography (CT) and magnetic resonance (MR) images. It would be advantageous to remove the need for CT images completely – the CT is only used for dose calculations and the patient will gain the benefits of only requiring one image set to be obtained. However, in order for this to occur, a method of calculating doses using MR images is needed because MR images do not contain the necessary data required to calculate dose. Additionally, it must be ensured that the treatment is as accurate as possible. In this project the feasibility of MR-based planning was examined using existing patient data and new data from simulation phantoms.

The plans from 39 prostate cancer patients were copied from the original planning CT to the MR images. Doses were calculated by applying density overrides to the image sets, using both manually defined contours and contours generated using atlas-based segmentation. Plans were also copied to, and doses calculated on, pseudo-CT images generated using a CT-atlas (i.e. CT images deformed to match MR geometry). Dose differences were evaluated by comparing point doses, Dose Volume Histograms (DVHs), and dose planes of each modified plan against doses calculated on the original planning CT scan. Provided bone was included in the dose calculations, the results agreed well with the original CT plan. The only major discrepancy arose due to differences in the external contour between CT and MR datasets, indicating that applying density overrides or using images obtained with a CT atlas are both accurate methods of dose calculation.

The same method of using density overrides was applied to plans on cone-beam CT (CBCT) images of 12 separate prostate cancer patients, and again showed an improvement in dose compared to the original CT. The effects of different image-guided radiotherapy (IGRT) alignment methods on the final dose were also examined, as were the effects of different planning target volume (PTV) margins. The results suggest that ideally implanted fiducial markers should be used for alignment, and the improved positional accuracy will allow for a reduction in PTV margins.

The entire MR-based process was tested using a custom made phantom. CT and MR images were obtained of the phantom, and the planning process was carried out on
each image set in parallel, using the density override method to calculate doses. The two plans agreed well with each other, demonstrating the feasibility of an MR-based workflow.