DISSECTING PROACTIVE CONTROL PROCESSES IN TASK-SWITCHING: A MODEL-BASED NEUROSCIENCE APPROACH

Elise Mansfield

B Psychology (Hons I)

Submitted in total fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Science and Information Technology
University of Newcastle, Australia
April, 2013
Declarations

Statement of originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Statement of collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Statement of authorship

I hereby certify that the work embodied in this thesis contains a published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

Thesis by publication

I hereby certify that this thesis is submitted in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a written statement from each co-author; and endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

Elise Mansfield
Publications

Publications arising from this thesis

Conference presentations arising from this thesis

Permission to reproduce material under copyright

I declare that I have obtained, where necessary, permission from the copyright owners to use my own published work in cases where the copyright is held by another party. Please refer to Appendix for these permissions.
Statement of Contribution

I attest that Research Higher Degree candidate Elise Mansfield made the following contributions to each of the papers that are submitted as part of her PhD thesis. Papers are listed below in the order they appear in this thesis, followed by an outline of co-author contribution.

A/Prof. Frini Karayanidis
Date: 27/3/2013

Prof. Andrew Heathcote
Date: 26/3/2013

Prof. Birte Forstmann
Date: 25.03.2013

Dr. Michael X. Cohen
Date: 25 March, 2013

Dr. Janette Smith
Date: 25/3/2013

Dr. Shama Jamadar
Date: 22/03/2013

Alexander Provost
Date: 28/3/2013

Kasey Galloway
Date: 28/3/13

Elise Mansfield
Date: 28/3/13

Endorsed by: A/Prof. Jenny Cameron
Date: 28.03.13

E.L. Mansfield collected approximately half of the data, analysed the ERP data and was involved in manuscript preparation. F. Karayanidis contributed to research design and took the lead role in manuscript preparation. K. L. Galloway contributed to data collection. J. L. Smith contributed to data analysis and manuscript preparation. A. Provost contributed to data analysis. A. Heathcote contributed to data analysis and manuscript preparation.

E.L. Mansfield collected approximately half of the data and took the lead role in manuscript preparation. F. Karayanidis contributed to research design and manuscript preparation. M. X. Cohen performed data analysis and contributed to manuscript preparation.

E.L. Mansfield contributed to research design, collected most of the data, conducted the fMRI data analysis and took the lead role in manuscript preparation. F. Karayanidis contributed to research design and manuscript preparation. S. Jamadar contributed to data analysis. A. Heathcote contributed to data analysis. B. U. Forstmann contributed to data analysis and manuscript preparation.

E.L. Mansfield contributed to research design, collected most of the data, conducted the diffusion MRI data analysis and took the lead role in manuscript preparation. F. Karayanidis contributed to research design and manuscript preparation. A. Heathcote contributed to data analysis. B. U. Forstmann contributed to data analysis and manuscript preparation.
Acknowledgements

This thesis was supported by an Australian Postgraduate Award and University of Newcastle Vice Chancellor’s Award for Outstanding RHD Candidate.

First of all I would like to thank my supervisors, Associate Professor Frini Karayanidis and Professor Birte Forstmann for their generous guidance and unwavering patience. I look forward to many more years of collaboration with you both. I would also like to thank Emeritus Professor Pat Michie for insightful comments regarding my work and Professor Andrew Heathcote for his assistance with cognitive modeling.

I am grateful to all members of the Functional Neuroimaging Laboratory, past and present, for their support. In particular I would like to thank Sharna Jamadar and Janette Smith for their excellent training, Tony Kemp and Gavin Cooper for technical assistance and Michael Player and Kasey Galloway for assistance with data collection. I would also like to thank fellow PhD students Lisa Whitson, Dearne Sanday and Alex Provost for their support and encouragement throughout my candidature.

I would like to extend a special thanks to all of the participants who gave their time and brains to contribute to my research. I also thank the radiographers at the John Hunter Hospital for assistance with MRI acquisition.

I dedicate this work to my wonderful friends and family who supported me throughout the journey.
Table of Contents

ABSTRACT ...12

ABBREVIATIONS ..13

CHAPTER 1: THE STRUCTURE AND ORGANIZATION OF COGNITIVE CONTROL PROCESSES 15
1.1 THE UNITY AND DIVERSITY OF COGNITIVE CONTROL ..15
1.2 PROACTIVE VS. REACTIVE COGNITIVE CONTROL PROCESSES18
1.3 DISSOCIATING COMPONENTS OF COGNITIVE CONTROL USING NEUROIMAGING TECHNIQUES ...19
1.4 INVESTIGATING THE COMPONENTS OF PREPARATORY CONTROL IN TASK-SWITCHING ...21
1.5 OVERVIEW OF THE THESIS ...22

CHAPTER 2: INFERRING COGNITIVE PROCESSES FROM BEHAVIOURAL,
ELECTROPHYSIOLOGICAL, HAEMODYNAMIC AND STRUCTURAL MEASURES25
2.1 BEHAVIOURAL MEASURES AND COGNITIVE MODELING ...25
2.2 ELECTROPHYSIOLOGY ...31
2.2.1 Event-related potentials ...31
2.2.1.1 The CNV ..33
2.2.1.2 The P300 ...34
2.2.2 Oscillatory activity ...34
2.2.3 Electrophysiology: Conclusions ..36
2.3 MAGNETIC RESONANCE IMAGING MEASURES ..37
2.3.1 Functional MRI ...37
2.3.1.1 Frontal, parietal and subcortical activation associated with higher-order cognitive control ..38
2.3.2 Diffusion-weighted imaging ..40
2.3.2.1 White matter connectivity in networks subserving higher-order cognitive control ..43
2.4 BRINGING IT ALL TOGETHER: USING MULTIPLE METHODOLOGIES TO INFORM MODELS OF COGNITIVE CONTROL ...44

CHAPTER 3: PREPARATORY PROCESSES IN THE TASK-SWITCHING PARADIGM:
BEHAVIOURAL, ERP AND FMRI EVIDENCE ..48
3.1 BEHAVIOURAL FINDINGS IN TASK-SWITCHING ...48
3.1.1 Early behavioural models of task-switching: Passive dissipation vs active reconfiguration of task-set ...49
3.1.2 Cued-trials task-switching paradigms ...54
3.1.3 The contribution of cue switching to switch cost ...56
3.1.4 Is there a switch-specific reconfiguration process? ...57
3.1.5 Evidence for inhibition of irrelevant task-sets in task-switching59
3.1.6 Summary of behavioural findings ...61
3.2 ELECTROPHYSIOLOGICAL EVIDENCE FOR ADVANCE TASK-SET RECONFIGURATION ...61
3.2.1 Differential switch positivity: Evidence from alternating runs and cued-trials task-switching ...63
3.2.2 Type of preparation indexed by the differential switch positivity65
3.2.3 General updating vs. Switch-specific preparation ..66
3.2.4 Linking cue-locked ERP components to behavioural performance69
3.2.5 Post-target differences between switch and repeat trials71
3.2.6 Summary of ERP studies of task-switching ..72
3.3 FMRI EVIDENCE FOR NEURAL NETWORKS ASSOCIATED WITH TASK-SWITCHING ..73
3.3.1 Dissociating cue-locked from target-locked processes in fMRI data74
3.3.2 Proactive vs reactive engagement of the fronto-parietal network75
3.3.3 Can preparatory activity be attributed to cue encoding?76
3.3.4 Is there evidence for brain regions that are responsible for switch-specific preparation? ...78
3.3.5 Summary of fMRI studies of task-switching ..78
3.4 SUMMARY OF BEHAVIOURAL, ERP AND FMRI STUDIES OF TASK-SWITCHING80
3.5 USING A MODEL-BASED NEUROSCIENCE APPROACH TO DECOMPOSE TASK-SWITCHING PERFORMANCE ...81
3.5.1 Nondecision time (Ter)...82
CHAPTER 4: ANTICIPATORY RECONFIGURATION ELICITED BY FULLY AND PARTIALLY INFORMATIVE CUES THAT VALIDLY PREDICT A SWITCH IN TASK ..87

4.1 EXPERIMENT I ...90
 4.1.1 Method ..93
 4.1.1.1 Participants ...93
 4.1.1.2 Stimuli and Tasks ...93
 4.1.1.3 Procedure ...94
 4.1.1.4 Data Analysis ..94
 4.1.2 Results ..96
 4.1.2.1 Cue-locked waveforms ...98
 4.1.2.2 Target-locked waveforms ..100
 4.1.2.3 Accuracy and Mean RT ..101
 4.1.3 Discussion ...103

4.2 EVIDENCE ACCUMULATION MODEL ANALYSIS105
 4.2.1 Method ..108
 4.2.2 Results ..111
 4.2.3 Discussion ...114

4.3 GENERAL DISCUSSION ..116

CHAPTER 5: SWITCH-RELATED AND GENERAL PREPARATION PROCESSES IN TASK-SWITCHING: EVIDENCE FROM MULTIVARIATE PATTERN CLASSIFICATION OF EEG DATA 122

5.1 METHODS ...124
 5.1.1 Participants ..124
 5.1.2 Stimuli and Tasks ..124
 5.1.3 Procedure and EEG Recording ...126
 5.1.4 Data analysis ...126
 5.1.4.1 EEG pre-processing ...126
 5.1.4.2 Power analysis ...127
 5.1.5 Multivariate pattern analysis ...128

5.2 RESULTS ...131
 5.2.1 Behavioral results ..131
 5.2.2 Power analyses ...132
 5.2.3 Multivariate pattern analysis ..134

5.3 DISCUSSION ...136
 5.3.1 Switch-related preparation ..137
 5.3.2 General task readiness ..138
 5.3.3 Conclusion ..139

CHAPTER 6: STRATEGIC ADJUSTMENT OF RESPONSE CAUTION IN TASK-SWITCHING140

6.1 TRIAL-BY-TRIAL RESPONSE THRESHOLD ADJUSTMENTS140

6.2 INTRINSIC SETTING OF RESPONSE THRESHOLD145

CHAPTER 7: ADJUSTMENTS OF RESPONSE THRESHOLD DURING TASK SWITCHING: A MODEL-BASED FMRI STUDY148

7.1 METHODS ..150
 7.1.1 Participants ..150
 7.1.2 Stimuli and Tasks ..150
 7.1.3 Procedure ..150
 7.1.4 Behavioral and EZ2 parameter analysis ...153
 7.1.5 Functional magnetic resonance image acquisition and data analysis..154
 7.1.6 ROI analysis ...155

7.2 RESULTS ...156
 7.2.1 ROI analyses ..156
Abstract

Cognitive control processes support purposeful, goal-directed behaviour in the presence of conflicting demands from our environment. Given advance information, this type of control can be engaged in anticipation of a change in behaviour. The cued-trials task-switching paradigm can temporally dissociate proactive and reactive cognitive control processes involved in switching between sets of abstract task rules. Typically, there is a performance cost for switch relative to repeat trials, which is attributed partly to proactive control processes required to prepare for a switch in task and partly to reactive control processes required to deal with between-task interference. Despite two decades of research into preparatory processes in task-switching, the cognitive processes and neural substrates that support proactive control remain underspecified. This thesis uses a model-based neuroscience approach to define the temporal and spatial characteristics of cognitive processes that contribute to proactive control in task-switching. Using converging evidence from ERPs, a novel multivariate pattern misclassification analysis of EEG data and cognitive modeling, we showed that a switch-specific preparation process is temporally and spatially distinct from more general task preparation for both switch and repeat trials. Consistent with a conflict control mechanism, we show that this switch-specific preparation process is linked to a right inferior frontal source and is related to upward adjustment of response caution in anticipation of more difficult switch trials. We also used fMRI- and DWI-based analyses to examine the neural basis of these cue-related adjustments in response caution, showing that distinct cortico-basal ganglia networks are associated with the ability to flexibly adjust response caution in anticipation of easy or difficult decisions, as well as intrinsic tendencies to set overall response caution high or low. We discuss implications of these findings for our understanding of the organization and timecourse of cognitive control mechanisms.
Abbreviations

Neuroanatomical

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Anterior cingulate cortex</td>
</tr>
<tr>
<td>CPJ</td>
<td>Caudate-putamen junction</td>
</tr>
<tr>
<td>DLPFC</td>
<td>Dorsolateral prefrontal cortex</td>
</tr>
<tr>
<td>IFC</td>
<td>Inferior frontal cortex</td>
</tr>
<tr>
<td>IFG</td>
<td>Inferior frontal gyrus</td>
</tr>
<tr>
<td>IFJ</td>
<td>Inferior frontal junction</td>
</tr>
<tr>
<td>IPL</td>
<td>Inferior parietal lobule</td>
</tr>
<tr>
<td>IPS</td>
<td>Intraparietal sulcus</td>
</tr>
<tr>
<td>PFC</td>
<td>Prefrontal cortex</td>
</tr>
<tr>
<td>PPC</td>
<td>Posterior parietal cortex</td>
</tr>
<tr>
<td>Pre-SMA</td>
<td>Pre-supplementary motor area</td>
</tr>
<tr>
<td>SPL</td>
<td>Superior parietal lobule</td>
</tr>
<tr>
<td>STN</td>
<td>Subthalamic nucleus</td>
</tr>
<tr>
<td>VLPFC</td>
<td>Ventrolateral prefrontal cortex</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESA</td>
<td>Brain Electrical Source Analysis</td>
</tr>
<tr>
<td>BIS</td>
<td>Barratt Impulsiveness Scale</td>
</tr>
<tr>
<td>BOLD</td>
<td>Blood oxygenation level dependent</td>
</tr>
<tr>
<td>CNV</td>
<td>Contingent negative variation</td>
</tr>
<tr>
<td>CSD</td>
<td>Current-source-density</td>
</tr>
<tr>
<td>CSI</td>
<td>Cue-stimulus interval</td>
</tr>
<tr>
<td>C-T interval</td>
<td>Cue-target interval</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>dHb</td>
<td>Deoxygenated haemoglobin</td>
</tr>
<tr>
<td>DMC</td>
<td>Dual mechanisms of control</td>
</tr>
<tr>
<td>D-Pos</td>
<td>Differential switch positivity</td>
</tr>
<tr>
<td>DWI</td>
<td>Diffusion weighted imaging</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyogram</td>
</tr>
<tr>
<td>EOG</td>
<td>Electrooculogram</td>
</tr>
<tr>
<td>EPI</td>
<td>Echo planar imaging</td>
</tr>
<tr>
<td>ERP</td>
<td>Event-related potential</td>
</tr>
<tr>
<td>Hb</td>
<td>Oxygenated haemoglobin</td>
</tr>
<tr>
<td>FA</td>
<td>Fractional anisotropy</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional magnetic resonance imaging</td>
</tr>
<tr>
<td>FSL</td>
<td>FMRIB Software Library</td>
</tr>
<tr>
<td>HRF</td>
<td>Haemodynamic response function</td>
</tr>
<tr>
<td>LPC</td>
<td>Late positive component</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>R-C interval</td>
<td>Response-cue interval</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>RT</td>
<td>Reaction time</td>
</tr>
<tr>
<td>R-T interval</td>
<td>Response-target interval</td>
</tr>
<tr>
<td>SPM</td>
<td>Statistical Parametric Mapping</td>
</tr>
<tr>
<td>S-R priming</td>
<td>Stimulus-response priming</td>
</tr>
<tr>
<td>TBSS</td>
<td>Tract-Based Spatial Statistics</td>
</tr>
<tr>
<td>TMS</td>
<td>Transcranial magnetic stimulation</td>
</tr>
<tr>
<td>T-R mapping</td>
<td>Target-response mapping</td>
</tr>
<tr>
<td>WM</td>
<td>White matter</td>
</tr>
</tbody>
</table>