Tetraspanins as Biomarkers and Causative Proteins in Prostate Cancer

Ben Troy Copeland
B.Biotech (Hons)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Biomedical Sciences and Pharmacy
University of Newcastle

July 2013
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Signature: .. Date:
ACKNOWLEDGMENTS

Like all PhD candidates I have too many people to thank than I can express here. But of course there are few people who deserve special mention. When I initially had a motorbike accident it was my recently passed Grandmother, Marjorie Copeland who took me in and suggested I attend University to find another career path. I remember openly laughing at the thought of going to University instead of working on a job site, but I did it, one step at a time as she suggested. I thank her for that initial catalyst that has led me on this wonderful and exciting new journey in my life.

My Mother (Marie) and Father (John) gave me a great free spirited, wonderful upbringing that gave me the resilience and strength of character to achieve this PhD. They still guide and support me to this day more than either of them realise and for that I thank them.

A huge thank you to all my supervisors Judith Weidenhofer, Severine Roselli and (unofficially) Nikki Verrills for all their support and help, in particular Professor Leonie Ashman. Leonie was consistently available to me and her ability to call a spade a spade to get me back on track when needed was exactly the supervision I required. Her willingness to help others (with no personal benefit), her enthusiasm and encouragement for collaborations and translational research was inspiring. When I see much of the scientific community being proactively insular, it was very refreshing and I will endeavour to promote these ideas in my subsequent career. Now this thesis is done, I sincerely wish her the all best in her well-deserved retirement (that started over a year ago!!).

In and around the labs, special mention has to go to Matthew Bowman for all the hard work he put in to help me trudge through the seemingly never ending pile of work that had to be done in the lab. Especially when we were holding over 200 animals at some stages that all needed constant monitoring!! All the staff and
students on level 3 LSB were always willing to help me out. Cheers to Dani and Jude for proof reading final copies of this thesis, when all the words started blurring into one to me. Thanks to the research support unit staff who were never too busy to help out even when they were swamped. Karen Chiam at the Garvan was a huge help with the patient data under trying circumstances. Thanks also to Ricardo Vilian at H.A.P.S who was always very helpful and extremely patient explaining anatomical pathology to a researcher.

Finally this work would not have been carried out without financial support from the University of Newcastle, the Prostate Cancer Foundation of Australia and the Mary Minto Sawyer scholarship.
TABLE OF CONTENTS

Declaration..ii
Acknowledgements..iii
List of Figures..xiii
List of Tables...xv
Abstract..xvi
Published papers..xvii
Conference Presentations..xix
Abbreviations..xxi

1 CHAPTER 1 INTRODUCTION.. 1

1.1 The prostate.. 2
 1.1.1 Gross anatomy of the human prostate.. 2
 1.1.2 Cellular anatomy of the prostate gland.. 3

1.2 Benign prostate ailments... 3

1.3 Prostate cancer (PCa).. 4
 1.3.1 PCa epidemiology.. 4
 1.3.2 PCa progression... 5

1.4 Current diagnostic and prognostic measures for PCa... 6
 1.4.1 Digital Rectal Examination (DRE) ... 6
 1.4.2 Prostate Specific Antigen (PSA)... 7
 1.4.2.1 Biology of PSA... 7
 1.4.2.2 PSA as a biomarker in PCa.. 7
 1.4.3 Needle biopsy... 10
 1.4.4 Gleason score.. 11
 1.4.5 Clinical staging (TNM) ... 12
1.9.2.2 Other mouse models of PCa ... 42
1.9.2.3 Cd151 and Cd9 knockout (KO) murine models 45
1.9.3 Normal mouse prostate histology .. 45
1.9.4 TRAMP prostate pathology ... 47
1.9.4.1 Differences in mouse and human prostate anatomy 49

1.10 Summary and project outline .. 51

2 CHAPTER 2: MATERIALS AND METHODS ... 54

2.1 Overview .. 55

2.2 General chemicals and reagents ... 55

2.3 Methods relating to animal experiments .. 55
2.3.1 Breeding of transgenic mice ... 55
 2.3.1.1 General .. 55
 2.3.1.2 TRAMP mice .. 56
2.3.2 CD151/TRAMP breeding scheme ... 56
2.3.3 CD9/TRAMP breeding scheme .. 57
 2.3.3.1 Husbandry of Experimental Animals .. 58
2.3.4 Genotyping of Mice .. 59
 2.3.4.1 DNA extraction .. 59
 2.3.4.2 Polymerase chain reaction (PCR) .. 59
 2.3.4.3 DNA electrophoresis ... 61
2.3.5 Experimental groups of mice ... 62
 2.3.5.1 Endpoint study group ... 63
 2.3.5.1.1 Palpation of mice .. 63
 2.3.5.1.2 Euthanasia and dissection of mice .. 64
 2.3.5.1.2.1 General .. 64
2.3.5.1.2.2 Gross removal of urogenital/reproductive tract............................ 65
2.3.5.1.2.3 Partial and full micro-dissection of prostate lobes 66
2.3.5.1.2.4 Collection of tumours and other organs 66
2.3.5.2 Bioluminescence study group .. 67
2.3.5.3 Development of the TRAMP TM2-Luc15 cell line 67
 2.3.5.3.1 Intra-cardiac injections ... 68
 2.3.5.3.2 In-vivo bioluminescence imaging of mice .. 68
 2.3.5.3.3 In-vivo bioluminescence imaging end point and tissue collection 69
 2.3.5.3.4 In-vivo bio-imaging analysis .. 69
2.3.6 Processing of formalin fixed paraffin embedded (FFPE) tissue samples 70
 2.3.6.1 Tissue fixation ... 70
 2.3.6.2 Tissue processing ... 70
2.3.7 Tissue embedding ... 71
 2.3.7.1 Formalin fixed paraffin embedded (FFPE) .. 71
 2.3.7.2 Frozen tissue sections ... 71
2.3.8 Silanisation of glass microscope slides ... 71
2.3.9 Sectioning of tissue blocks ... 72
 2.3.9.1 FFPE ... 72
 2.3.9.2 Fresh frozen .. 72
2.3.10 Hematoxylin and eosin (H&E) staining of FFPE sections 73
2.3.11 Immunohistochemistry (IHC) staining of FFPE sections 73
2.3.12 Immunofluorescent (IF) staining of fresh frozen sections 74
2.3.13 IHC and IF controls .. 75
2.3.14 Analysis of FFPE slides with the Aperio digital pathology system 76
 2.3.14.1 General .. 76
 2.3.14.2 Scanning of slides .. 77
 2.3.14.3 Analysis of mouse liver and lung metastases 77
 2.3.14.4 Characterisation of endpoint point group tumours 77
 2.3.14.4.1 Nuclear staining algorithm .. 78
2.3.14.4.2 Positive pixel count algorithm ... 79
2.3.15 Fluorescence microscopy .. 80
2.3.16 Statistical Analysis .. 80

2.4 Methods relating to human TMA biomarker experiments 81
2.4.1 Tissue Microarrays (TMAs) .. 81
 2.4.1.1 Overview ... 81
 2.4.1.2 Pilot TMAs .. 81
 2.4.1.3 Gleason progression TMAs ... 81
2.4.2 IHC on TMAs ... 81
2.4.3 Analysis of TMAs ... 83
 2.4.3.1 General .. 83
 2.4.3.2 Scanning of TMAs .. 83
 2.4.3.3 TMA Lab .. 83
 2.4.3.4 Automated analysis of TMAs ... 83
 2.4.3.4.1 Annotations of TMAs ... 83
 2.4.3.4.2 Colour deconvolution algorithm .. 84
 2.4.3.5 Manual analysis of TMAs ... 85
 2.4.3.6 Statistical Analysis ... 85

3 CHAPTER 3: CHARACTERISATION OF THE CD151/TRAMP AND
CD9/TRAMP MOUSE MODELS .. 87

3.1 Introduction ... 88

3.2 Results ... 91
 3.2.1 Confirmation of genetic modifications in the mouse models 91
 3.2.2 Allocation of mice to study groups ... 94
 3.2.3 Developmental characterisation .. 94
 3.2.3.1 Normal prostate development .. 94
3.2.3.2 Tumour progression in the model ... 96
3.2.3.3 Seminal vesicle enlargement ... 100
3.2.4 Tetraspanin expression in mouse prostate tissue ... 101
 3.2.4.1 Expression of Cd151 in mouse tissue ... 101
 3.2.4.2 Expression of Cd9 in mouse tissue .. 105
 3.2.4.3 Expression of Cd82 in mouse tissue ... 108
3.2.5 Expression of the SV40 protein .. 110
 3.2.5.1 Expression of the SV40 protein in TRAMP and wt prostate tissue 110
 3.2.5.2 Expression of the SV40 protein in wt and Cd151 and Cd9 KO tissue 111
3.2.6 Characterisation of metastatic lesions ... 115
3.2.7 Characterisation of cells in the primary tumour lesions 116

3.3 Discussion ... 120

4 CHAPTER 4: EFFECTS OF THE GENETIC ABLATION OF THE TETRASPANIN CD151 ON PROSTATE CANCER INITIATION AND PROGRESSION IN THE TRAMP MODEL .. 131

4.1 Introduction ... 132

4.2 Results .. 134
 4.2.1 Results for the endpoint study group ... 134
 4.2.1.1 Effects of Cd151 on primary prostate tumour development 134
 4.2.1.2 Effects of Cd151 on proliferation, apoptosis and angiogenesis within the primary prostate tumour ... 136
 4.2.1.3 Effects of Cd151 on metastasis in the CD151/TRAMP model 137
 4.2.2 Results for the bioluminescence study group .. 141
 4.2.2.1 Bio imaging analysis of liver metastasis .. 142
 4.2.2.2 Histopathology analysis of liver metastasis 145
4.3 Discussion .. 147

5 CHAPTER 5: EFFECTS OF THE GENETIC ABLATION OF THE TETRASPANIN CD9 ON PROSTATE CANCER INITIATION AND PROGRESSION IN THE TRAMP MODEL ... 154

5.1 Introduction ... 155

5.2 Results ... 157
 5.2.1 Effects of ablation of Cd9 on primary prostate tumour development 157
 5.2.2 Effects of Cd9 on proliferation, apoptosis and angiogenesis in cells in the primary prostate tumour ... 159
 5.2.3 Effects of Cd9 on metastases ... 160

5.3 Discussion ... 164

6 CHAPTER 6: EVALUATION OF TETRASPANINS AS PROGNOSTIC BIOMARKERS FOR PROSTATE CANCER IN HUMANS ... 170

6.1 Introduction ... 171

6.2 Results ... 172
 6.2.1 IHC staining of TMAS ... 172
 6.2.2 Analysis of protein expression on TMAs .. 174
 6.2.2.1 Analysis by Aperio automated digital pathology algorithms 175
 6.2.2.2 Analysis by manual scoring ... 179
 6.2.2.3 Clinical data analysis .. 183
 6.2.3 Discussion ... 186

7 CHAPTER 7: GENERAL DISCUSSION AND FUTURE DIRECTIONS .. 190
7.1 General discussion and future directions .. 191

8 APPENDIX .. 198

8.1 Buffers and reagents for IHC ... 198
 8.1.1 10X PBS stock solution .. 198
 8.1.2 1X PBS working solution .. 198
 8.1.3 PBT working Buffer .. 198
 8.1.3.1 Scott’s tap water substitute .. 198

9 REFERENCES .. 199
List of Figures

Figure 1: Schematic of the normal human prostate.. 2
Figure 1-2: Prevalence of incidence and deaths from PCa. ... 9
Figure 1-3 Gleason histological scoring system. .. 12
Figure 1-4: Structure of a typical tetraspanin... 21
Figure 1-5: Histological representation of the four lobes of the mouse prostate. 46
Figure 1-6: Representation of the TRAMP histopathology. .. 49
Figure 1-7: Comparison of mouse and human prostate anatomy................................. 51
Figure 2-1: Breeding strategy to produce the CD151/TRAMP experimental animals. 57
Figure 2-2: Breeding strategy to produce the CD9/TRAMP experimental animals. 58
Figure 3-1: PCR of the SV40 transgene was used to determine animals with the TRAMP genotype... 92
Figure 3-2: PCR determination of the Cd151 wt, heterozygous and KO genotypes. 92
Figure 3-3: PCR determination of the Cd9 wt, heterozygous and KO genotypes. 93
Figure 3-4: Representative of normal prostate development in the animals............... 95
Figure 3-5: Tumours harvested from mouse models were analysed via histopathology... 99
Figure 3-6: Cumulative incidence of palpable primary tumours and metastases, in the CD151/TRAMP and CD9/TRAMP animals from the endpoint group. 100
Figure 3-7: Seminal vesicles were enlarged in TRAMP animals................................. 101
Figure 3-8: Expression of Cd151 in mouse prostate normal and tumour tissue........ 103
Figure 3-9: Expression of Cd9 in mouse normal prostate and prostate tumours. 106
Figure 3-10: Expression of Cd82 in mouse prostate normal and tumour tissue......... 109
Figure 3-11: Expression of the SV40 T-ag protein in mouse prostate tissue............ 111
Figure 3-12: Expression of the SV40 protein in non-cancerous mouse prostate tissue of various genotypes... 113
Figure 3-13: Expression of the SV40 protein in poorly differentiated mouse primary prostate tumour tissue of various genotypes... 114
Figure 3-14: Determination of the origin of the metastatic lesions. 116
Figure 3-15: Characterisation of tumour lesions for expression of the neuroendocrine cell marker, synaptophysin... 118
Figure 3-16: Characterisation of tumour lesions for the epithelial cell marker E-cadherin and the SV40 T-ag protein.. 119
Figure 4-1: Survival curves of Cd151 wt, heterozygous and KO animals. 135
Figure 4-2: Tumour weights of Cd151 wt, heterozygous and KO animals. 136
Figure 4-3: Representative IHC labelling and automated algorithm analysis of TMAs.... 137
Figure 4-4: Incidence of metastasis in the Cd151 animals. .. 139
Figure 4-5: Total number and area of metastatic foci in Cd151 wt, heterozygous and KO animals. .. 140
Figure 4-6: Average area of metastatic foci in each organ of each mouse. 141
Figure 4-7: In vitro bioluminescence of TM2-luc15 cells. ... 142
Figure 4-8: In-vivo imaging of the bioluminescence study group. 143
Figure 4-9: Ex-vivo bioluminescence imaging of organs. ... 144
Figure 4-10: Analysis of metastatic foci from the bioluminescence images. 145
Figure 4-11: Histopathology analysis of the liver metastases of the bioluminescence animals. .. 146
Figure 4-12: Total number and area of the metastatic foci in liver of the bioluminescence study group animals.. 147
Figure 5-1: Tumour weights of Cd9 animals at time of palpable tumour detection...... 158
Figure 5-2: Survival curves of wt, heterozygous and Cd9 KO animals. 159
Figure 5-3: Representative IHC labelling and automated algorithm analysis of TMAs.... 160
Figure 5-4: Incidence of metastasis to the liver (A) and lung (B) in Cd9 wt, heterozygous and KO animals. .. 162
Figure 5-5: Number of metastatic foci to the liver in Cd9 wt, heterozygous and KO animals. .. 163
Figure 5-6: Average size of metastatic foci. ... 164
Figure 6-1: Representative IHC labelling on the TMAs. ... 174
Figure 6-2: Representation of the annotations to select regions of interest in the TMA spots.. 175
Figure 6-3: IHC quantitation using the Aperio automated algorithms.................... 178
Figure 6-4: IHC quantitation using the manual pathological scoring method. 182
List of Tables

Table 1-1: List of known human tetraspanins and associated information 19
Table 2-1: PCR primer sets .. 60
Table 2-2: PCR mastermixes ... 61
Table 2-3: PCR thermocycler conditions ... 61
Table 2-4: Experimental groups of CD151 animals based on genotype 63
Table 2-5: Experimental groups of CD9 animals based on genotype 63
Table 2-6: Conditions for processing of formalin fixed tissue in the LYNX II tissue processor ... 70
Table 2-7: Primary antibodies used for labelling mouse tissue ... 76
Table 2-8: IHC negative control ... 76
Table 2-9: Intensity threshold limits for the nuclear staining algorithms 79
Table 2-10: Intensity threshold limits for the positive pixel count algorithm 79
Table 2-11: Primary antibodies used for labelling antigens in TMAs 82
Table 2-12: Upper threshold limits for the colour deconvolution algorithms 84
Table 3-1: Error rates for genotyping of animals ... 94
Table 3-2: Total male animals bred and genotyped .. 94
Table 3-3: Tumour progression 10 week study group observations 97
Table 3-4: Tumour progression 20 week study group observations 97
Table 4-1: Contingency tables showing incidence of metastatic lesions to the liver in wt and Cd151 KO animals ... 138
Table 4-2: Contingency table showing incidence of metastatic lesions to the lung in wt and Cd151 KO animals ... 138
Table 5-1: Contingency table showing incidence of metastatic lesions to the liver in Cd9 animals .. 161
Table 5-2: Contingency table showing incidence of metastatic lesions to the lung in Cd9 animals .. 161
Table 6-1: Summary of the clinical and pathological parameters of the patient cohort used for clinical analysis for the IHC staining intensity results ... 185
Abstract

Prostate cancer (PCa) is the most commonly diagnosed solid cancer and the cause of the second highest mortality rates in men in the majority of western counties. There are two major unmet needs in dealing with prostate cancer. Firstly, since the majority of deaths from prostate cancer are attributed to the largely untreatable late stage metastatic forms of the disease, understanding molecules involved in the metastatic cascade of PCa may prove beneficial in regards to therapeutic options. Secondly, PCa is a very heterogeneous disease and in many cases follows an indolent course. There are currently no reliable biomarkers to gauge which patients will progress on to advanced disease. Hence, biomarkers that can be implemented into the diagnostic process to stratify patients diagnosed with PCa in regards to their likely outcome allowing the assignment of the most effective and less invasive treatment options are urgently needed.

Tetraspanins are membrane bound proteins that associate with motility related molecules such as integrins. In vivo and in vitro experimental studies have indicated tetraspanins may be important regulators of tumour invasion and metastasis in a number of cancers. Furthermore clinical studies have shown that high expression levels of the tetraspanins CD82 and CD9 have been correlated to good prognosis, while in contrast increased expression of the tetraspanins CD151 and Tspan8 have been correlated with more aggressive cancers and poor outcomes. In this study, for the first time the effects of gene ablation of the pro- and anti-tumourigenic/metastatic tetraspanins, Cd151 and Cd9 respectively, have been evaluated in a de novo developing and spontaneously metastasising murine model of prostate cancer. In addition analysis of clinical tissue microarrays containing a cohort of various prostate tissue samples have been assessed by immunohistochemistry for CD151, Tspan8, CD82 and CD9 expression levels.
The \textit{Cd9} and \textit{Cd151} knock-out mouse models were independently crossed onto the TRansgenic Adenocarcinoma of Mouse Prostate (TRAMP) mouse model. We report here for the first time that development of primary prostate tumours was not affected by ablation of either \textit{Cd9} or \textit{Cd151}. However ablation of \textit{Cd9} resulted in an increase of metastatic lesions (number of foci and total area) to the liver. Conversely ablation of \textit{Cd151} resulted in a decrease of metastatic lesion (number of foci and total area) to the lungs. No change in average area of individual metastases was observed in either case.

Normal and matched PCa tissue samples on tissue micro-arrays obtained from the Australian Prostate Cancer Consortium (APCC) were analysed by IHC. The expression of CD151 and Tspan8 was shown to be positively correlated to PCa progression. In contrast, CD9 and CD82 expression was shown to be negatively correlated to cancer progression. Our results showed weaker correlation with prognosis than previous reports and possible reasons are discussed. In adjunct to the classical pathological IHC manual scoring method, automated digital pathology (Aperio) systems were evaluated in an attempt to standardise IHC scoring. The automated scoring showed similar trends with manual scoring, in regards to tetraspanin expression and cancer progression, however resulted in less significant associations.

In summary, the tetraspanins \textit{Cd9} had anti-metastatic effects while conversely \textit{Cd151} had pro-metastatic effects. Both \textit{Cd9} and \textit{Cd151} had no effect on the development of primary prostate tumours in the TRAMP model. These molecules may be beneficial therapeutic options as metastatic modulators. More extensive evaluation the tetraspanins CD151, Tspan8, CD9 and CD82 as prognostic markers that can delineate PCa patients whose disease may remain indolent and those who will progress is needed.
Papers published

Conference Presentations

Oral presentations

Ben T Copeland, Matthew J Bowman, Claude Boucheix and Leonie K Ashman.

Ben T Copeland, Matthew J Bowman, Claude Boucheix and Leonie K Ashman.

Ben T Copeland, Matthew J Bowman and Leonie K Ashman.

Tetraspanins Influence on Initiation and Progress of Prostate Cancer. Hunter Medical Research Institute Cancer Research Symposium, November 2011. Newcastle, Australia. _Awarded best talk from selected abstracts._

Ben T Copeland Matthew J Bowman and Leonie K Ashman.

Tetraspanins CD151 and CD9 and their effect on Prostate Cancer and Initiation and Progression. School of Biomedical Sciences and Pharmacy Seminar, September 2011. University of Newcastle, Newcastle, Australia.

Ben T Copeland Matthew J Bowman, Claude Boucheix and Leonie K Ashman.

Tetraspanins CD151 and CD9: Metastatic Regulators in Prostate Cancer. FASEB Summer Research Conference, Membrane Organization by Molecular Scaffolds, July 2011. Vermont, United States. _Awarded travel grant from abstract._
Ben T Copeland, Matthew J Bowman and Leonie K Ashman.

Ben T Copeland, Ricardo Vilain, Leonie Ashman.

Poster presentations

Ben T Copeland and Leonie K Ashman.

Ben T Copeland, Matthew J Bowman, Claude Boucheix and Leonie K Ashman.

Ben T Copeland, Matthew J Bowman, Claude Boucheix and Leonie K Ashman.

Ben T Copeland, Mark Formby, Ricardo Vilain and Leonie K Ashman.
Evaluation of Tetraspanin Expression in Prostate Cancer Tissue Microarrays.
Hunter Medical Research Institute Cancer Research Symposium, November 2010. Newcastle, Australia.

Ben T Copeland, Ricardo Vilain, Leonie Ashman

Ben T Copeland, Ricardo Vilain, Leonie Ashman.

Ben T Copeland, Ricardo Vilain, Leonie Ashman.
Media releases

From the Copeland et al. (2013b) paper published in the International Journal of Cancer, figure 4 was chosen to grace the cover.

Scientific photo with accompanying plaque outlining project details. The *HMRI through the lens* competition. Displayed at Wallsend District Library; May-July 2010, John Hunter Hospital; July-September 2010, Waiting hall of the chief scientific advisor office, Canberra; ongoing. University of Newcastle, ongoing; Hunter Medical Research Institute, ongoing. Electronically displayed on the ABC website http://www.abc.net.au/local/photos/2010/05/28/2912341.htm.

Newspaper article in the *Newcastle Herald* outlining the research project and importance to the community. November 2008. Fairfax Media Limited, Sydney, Australia.
Abbreviations

<p>| 1° | Primary |
| 2° | Secondary |
| A.B.R | Australian Bio Resource |
| A.P.C.C | Australian Prostate Cancer Collaboration |
| AP | Anterior prostate |
| AR | Androgen receptor |
| ARBS | Androgen receptor binding site |
| B6 | C57BL/6 |
| bp | Base pair |
| BPH | Benign prostatic hyperplasia |
| CCG | Cysteine-cysteine-glycine |
| CO₂ | Carbon dioxide |
| DAB | Diaminobenzidine |
| ddH₂O | Double distilled water/Milli Q water |
| DNA | Deoxyribonucleic acid |
| DP | Dorsal prostate |
| DRE | Digital rectal examination |
| EC1 | Extracellular loop 1 |
| EC2 | Extracellular loop 2 |
| ECM | Extracellular matrix |
| FFPE | Formalin fixed paraffin embedded |
| FVB | FVB/n |
| GEMMs | Genetically engineered mouse models |
| H&E | hematoxylin and eosin |
| het | Heterozygous |
| HIER | Heat induced antigen epitope retrieval |
| HRP | Horse radish peroxidase |
| HRPC | Hormone refractory prostate cancer |
| IF | Immunofluorescence |
| IgG | Immunoglobulin G |
| IHC | Immunohistochemistry |
| KO | Knockout |
| LEL | Large extracellular loop |
| LP | Lateral prostate |
| mAb | Monoclonal antibody |
| mCRPC | Metastatic castrate resistant prostate cancer |
| MD | Moderately differentiated |
| MMPs | Matrix metalloproteinases |
| n | Number |</p>
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/N</td>
<td>Overnight</td>
</tr>
<tr>
<td>OCT</td>
<td>Optimal cutting temperature</td>
</tr>
<tr>
<td>PAP</td>
<td>Prostatic acid phosphatase</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCa</td>
<td>Prostate cancer</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Poorly differentiated</td>
</tr>
<tr>
<td>PIN</td>
<td>Prostatic intraepithelial neoplasia</td>
</tr>
<tr>
<td>PSA</td>
<td>Prostate specific antigen</td>
</tr>
<tr>
<td>Rab</td>
<td>Rabbit</td>
</tr>
<tr>
<td>ROI</td>
<td>Regions of interest</td>
</tr>
<tr>
<td>rPB</td>
<td>Minimal rat probasin promoter</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEL</td>
<td>Small extracellular loop</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SV</td>
<td>Seminal vesicle</td>
</tr>
<tr>
<td>SV40</td>
<td>Simian virus 40</td>
</tr>
<tr>
<td>T/N/M</td>
<td>Tumour/node/metastases</td>
</tr>
<tr>
<td>Tag</td>
<td>Early tumour antigen</td>
</tr>
<tr>
<td>TEM</td>
<td>Tetraspanin enriched micro-domain</td>
</tr>
<tr>
<td>TMA</td>
<td>Tissue microarray</td>
</tr>
<tr>
<td>TRAMP</td>
<td>Transgenic adenocarcinoma of the mouse prostate</td>
</tr>
<tr>
<td>TURP</td>
<td>Transurethral resection of the prostate</td>
</tr>
<tr>
<td>UoN</td>
<td>University of Newcastle</td>
</tr>
<tr>
<td>UT</td>
<td>Urogenital tract</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume/volume</td>
</tr>
<tr>
<td>VP</td>
<td>Ventral prostate</td>
</tr>
<tr>
<td>w</td>
<td>Watts</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight/volume</td>
</tr>
<tr>
<td>WD</td>
<td>Well differentiated</td>
</tr>
<tr>
<td>wt</td>
<td>Wild type</td>
</tr>
</tbody>
</table>