Chemical trapping of nitric oxide by aromatic nitroso sulfonates

A Thesis submitted for the Degree of

DOCTOR OF PHILOSOPHY

By

Wendy Koo Pao Foon Venpin, BEng (Hons)

March, 2013

Chemical Engineering
School of Engineering
Faculty of Engineering and Built Environment
The University of Newcastle
Callaghan, NSW 2308, Australia
STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University library, being made available for loan and photocopying subject to the provision of the Copyright Act 1968.

__

Wendy Venpin

Date: 28 March 2013
STATEMENT OF AUTHORSHIP

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisors, attesting to my significant contribution to the joint publications.

____________________________ Date: 28 March 2013

Wendy Venpin
STATEMENT OF CONTRIBUTION OF OTHERS

We, the undersigned, attest that Research Higher Degree candidate, Wendy Koo Pao Foon Venpin, has devised the experimental program, conducted experiments, analysed data, performed computational chemistry calculations and has written all papers included in this thesis. Professors Bogdan Z. Dlugogorski, Eric M. Kennedy and John C. Mackie provided advice on the experimental program, project direction and assisted with the editing of the papers, consistent with normal supervisors-candidate relations.

Professor Bogdan Z. Dlugogorski Date:

Professor Eric M. Kennedy Date:

Professor John C. Mackie Date:
DEDICATIONS

To my late father, Charles Venpin, who provided an example of a hardworker and inspired my love for science and engineering.
ACKNOWLEDGEMENT

It would not have been possible to write this doctoral thesis without the help and support of many kind people around me, only to some of whom it is possible to give particular mention here.

First of all, I would like to thank my supervisors Professors Bogdan Z Dlugogorski, Eric M Kennedy and John Mackie. Their understanding, encouragement and personal guidance have provided a good basis for the present study.

I would like to acknowledge the financial support of the University of Newcastle particularly in the award of a postgraduate research scholarship that provided the necessary financial support for this research.

Special thanks to the staff members of Dyno Nobel at Mt Thorley: Ben De Vries, Brendan Griggs, Jade Pettersen and the Site Leader Jeff Gore, for their kind advice and sharing their expertise in ammonium nitrate emulsion explosives.

Many thanks go in particular to Mark Rayson for his valuable advice and assistance with the UV-Vis and kinetics experiments.

I owe my most sincere gratitude to Dr Ian Van Altena for always granting time to answer my questions and helping me with the NMR analysis from the discipline of Chemistry.

My warm thanks are due to Prof Marcel Maeder and Deborah Fernandes for their assistance in performing potentiometric experiments in their facility.
I am also grateful to Nathan Smith and Tony Rothkirch from the Analytical and Biomolecular Research Facility (ABRF) for their assistance with the NALDI and GC mass spectrometry analysis respectively.

I would like to thank Dr Geoffrey De Iuliis from the School of Environmental and Life Sciences for his guidance in HPLC analysis.

To the present and former staff members of the Priority Research Centre (PRC) for Energy and Chemical Engineering department: Jane Hamson, Rebecca Carey, Chi Crosskill, David Dlugogorski, Neil Gardener, Gillian Hensman Jenny Martin, Darren McCarthy, Scott Molloy, Bernadette Rossiter, Ron Roberts, Con Safouris and Tanya Shanley for their technical and administrative assistance.

I thank my fellow student colleagues at the PRC for energy for providing a stimulation and fun environment in which we can learn and grow: Khalil Ahmad, Reydick Balucan, Kai Chen, Joyeth Dorado, Vaibhav Gaikwad, Manisha Ghoorah, Song Hou, Juita, Sazal Kundu, Timothy Oliver, Michael Opoku, Hans Oskierski, Mark Rayson and Sinda Summoogum,

I wish to thank my mum and brother, Rose May and Brian Venpin for providing me a loving environment and their encouragement and prayers.

I owe my loving thanks to my fiancé Eric Lim Yu Choy whom I left behind to pursue my studies in Australia. I am grateful for his kind patience, care, encouragement and love throughout the duration of my postgraduate studies.

Last and most importantly, I thank God for His love, grace, wisdom, favour, faithfulness and protection in my life.
This thesis investigates the employment of spin traps as NOx scavengers to control noxious NOx formation during nitrosation reactions. Most notably, the reaction conditions studied are relevant to the sensitisation of emulsion explosives activated by the chemical gassing, where the formation of these gases can trigger serious respiratory problems to explosives users. Spin traps are widely used by biochemists to detect and measure free radicals such as nitric oxide (NO) in biological systems. The spin trapping reaction involves the addition of a radical to the spin trap, which results in the formation of a complex adduct, detectable by electron paramagnetic resonance (EPR). Intuitively, as a result of the effect of the spin trapping reaction on free radical, these spin traps can potentially play an important role in the development of a new technology to reduce NOx emission.

Four aromatic ortho substituted nitroso compounds, 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS), nitrosobenzene sulfonate (NBS), 3,5-dimethyl-4-nitrosobenzene sulfonate (DMNBS) and 3,5-dichloro-4-nitrosobenzene sulfonate (DCNBS) were subjected to detailed experimental and theoretical investigation in this thesis. These compounds were synthesised by the oxidation of their corresponding amine compounds and characterised by infrared (IR), ultraviolet visible (UV-Vis), nuclear magnetic resonance (NMR) spectroscopy and nanostructured assisted laser desorption ionisation mass spectrometric (NALDI-MS).

The thesis initially studied the reaction of DBNBS with NO, where NO was generated in an acidic nitrite solution, conditions which are similar to the chemical gassing process of emulsion explosives, by examining gaseous and liquid products from the
reaction. Membrane inlet mass spectrometer (MIMS) analysis disclosed the presence of significant amount of nitrogen gas (N₂) in the gas phase, whereas ion chromatographic analysis of the reaction mixture disclosed elevated amounts of nitrate were formed during the gassing reaction.

During the reaction, DBNBS initially reacts with NO to form a short live DBNBS-NO adduct. The release of N₂ is a consequence of the homolytic cleavage of the C-N bond of a diazenyl radical. This assertion is based on quantum chemical calculations (Density Functional Theory) which validates the favourable formation of a diazenyl radical as well as oxygen. The elevated concentration of nitrate in solution provides additional evidence of the presence of oxygen released as a result of the decomposition of the radical intermediate (DBNBS-NO adduct). NALDI-MS analysis of liquid products in the study enabled the identification of 3,4,5-trinitrobenzene sulfonate (MW of 291.888 a.m.u) as the primary product from the reaction, and a number of other nitro compounds were also identified. Analysis of the gaseous and liquid products, in particular the NALDI-MS technique, demonstrates that the presence of nitrite leads to the formation of a competing reaction pathway whereby nitro group is introduced in the aromatic system through the coupling of nitrite with a phenyl radical.

A novel membrane NOx analyser and a stopped-flow UV-Vis spectrometer were employed to determine the rate of trapping of NO by DBNBS based on the proposed mechanism. The thermodynamic and kinetic properties of the dissociation of DBNBS dimer to its monomer, were first investigated as this step controls the trapping of NO by DBNBS. An equilibrium constant, K_C of $(1.29 \pm 0.03) \times 10^{-3}$ (at 25 °C) for DBNBS dimer/monomer interchange was estimated, which indicates that, at equilibrium around 20 % of the dissolved DBNBS is present as monomer at room temperature, and
available for trapping NO under these conditions. The study of the reaction at temperatures ranging from 25 to 60 °C shows increasing monomer equilibrium concentrations as temperature rises.

Analysis of the measurements from the ex situ trapping of NO (where nitric oxide was generated via the rapid nitrosation of ascorbic acid) to a multistep reaction mechanism resulted in an estimate of the rate constant k_{Trap} of 165 mol$^{-1}$ dm3 s$^{-1}$. In contrast, the net rate of trapping was considerably lower with a value of 4.7 mol$^{-1}$ dm3 s$^{-1}$ for the in situ reaction of DBNBS with NO, where NO is formed via the slow decomposition of nitrous acid.

The physicochemical properties of the four selected aromatic ortho substituted nitroso compounds were also examined. Since the four nitroso compounds exist in a monomer-dimer equilibrium with only the monomeric form behaving as a free radical scavenger, thermodynamic analysis of the dimer-monomer equilibrium was undertaken using UV-Vis spectrophometer.

The reactivity of the aromatic ortho substituted nitroso compounds towards NO was investigated, to determine the effect of substituents on the aromatic ring towards trapping efficiency in an aqueous system. The production of nitrogen gas and an elevated quantities of nitrate were observed during the reactions of nitroso compounds with NO suggesting that the homolytic cleavage of aryl radicals generally occurs when nitroso compounds reacts with NO as proposed previously for DBNBS.

The capacity of the aromatic nitroso sulfonates was investigated at ammonium nitrate (AN) concentration ranging from 0 to 7.5 mol dm$^{-3}$ for trapping NO. The solubility of DCNBS in AN solutions was the most affected among the four compounds and was
reflected by a notable decrease in the efficiency of NO removal by the compound with increasing AN concentrations.

Experiments in AN explosive established that chemical trapping of NO was more efficient when the nitroso compounds were added at the time of chemical gassing, rather than being part of the discrete phase of the emulsion. All nitroso compounds demonstrated an inhibitory effect on the amount of NO released from the chemical gassing of the emulsion explosive. Owing to the reduced efficiency in NO removal in AN solutions and AN emulsion, aromatic nitroso sulfonates are good NO scavengers with removal efficiency in NO of up to 70 % that can be achieved in sensitised AN emulsion.
LIST OF PUBLICATIONS

Journal Articles

Conference

Table of Contents

Statement of Originality ... i
Statement of Authorship ... ii
Statement of Contribution of Others .. iii
Dedications.. iv
Acknowledgement ... v
Abstract... vii
List of Publications ... xi
Table of Contents ... xii
List of Abbreviation .. xxv

Chapter 1: Introduction ... 1
 1.1 Background ... 2
 1.2 Project Objectives .. 6
 1.3 Thesis structure ... 7
 1.4 References ... 8

Chapter 2: Literature review .. 10
 2.1 Introduction .. 11
 2.2 Characteristics of nitric oxide (NO) ... 12
 2.3 Toxicology of NO and environmental effects ... 14
 2.4 Preparation of nitric oxide ... 16
 2.5 NOx control measures .. 17
 2.5.1 NOx abatement in chemical industry... 18
2.6 Analytical methods for determining the concentration of nitric oxide

2.6.1 Mass spectrometry

2.6.2 Chemiluminescence analyser

2.6.3 Electron paramagnetic resonance

2.6.4 Electrochemical sensors

2.6.5 Fluorometric assay

2.6.6 Other methods

2.7 Nitric oxide in biological systems

2.7.1 Spin trapping technique to develop NO scavengers

2.7.2 Different types of spin traps

2.7.2.1 Metal complexes

2.7.2.2 Nitronyl nitroxide

2.7.2.3 Nitric oxide cheletropic traps (NOCT’s)

2.7.2.4 Aci-+nitromethane (aci NM)

2.7.2.5 Classic nitroso spin traps

2.7.3 Selection of NO spin traps as potential NO scavenger

2.8 Summary

2.9 References

Chapter 3: Methodology

3.1 Chemicals

3.1.1 Nitroso spin trap as an NO scavenger

3.1.2 Synthesis of nitrosobenzene sulfonate
3.1.2.1 3,5-dibromo-4-nitrosobenzene sulfonates sodium salt (DBNBS) ... 61
3.2.1.2 Tetrabutylammonium 4-nitrosobenzenesulfonate (NBS) 62
3.2.1.3 3,5-dimethyl-4-nitrosobenzene sulfonate sodium salt (DMNBS) ... 63
3.2.1.4 3,5-dichloro-4-nitrosobenzene sulfonate sodium salt (DCNBS) ... 63
3.1.3 Characterisation of nitrosobenzene sulfonate compounds 64
3.1.3.1 H-NMR and C-NMR ... 64
3.1.3.2 UV-Vis spectroscopy ... 64
3.1.3.3 IR spectroscopy ... 65
3.1.3.4 Nanostructured assisted laser desorption ionisation mass spectroscopy (NALDI-MS) ... 65
3.1.3.5 Characterisation data ... 66
3.1.4 Stability of the aromatic nitroso compounds 68
3.2 Experimental apparatus ... 69
3.3 Methods .. 72
3.3.1 Generation of NO saturated solutions 72
3.3.2 Trapping reaction .. 73
3.3.2.1 In situ trapping of NO / preparation of reaction mixture 74
3.3.2.2 Ex situ trapping of NO ... 74
3.3.3 Gaseous analysis .. 75
3.3.3.1 Membrane inlet mass spectrometer 75
3.3.3.2 FTIR analysis .. 76
3.3.4 Liquid product analysis ... 77
3.3.4.1 Ion chromatography ...77
3.3.4.2 NALDI-MS .. 78
3.3.5 Kinetic measurement ...78
 3.3.5.1 Stopped flow UV-Visible spectroscopy – kinetics
 measurement of nitroso compounds ..78
 3.3.5.2 Membrane NOx chemiluminescence analyser - kinetic
 measurements of NO ...81
3.3.6 Computational techniques ...83

3.4 References ...84

Chapter 4: Study of trapping of NO by 3,5-dibromo-4-nitroso benzene sulfonate. 86
4.1 Introduction ...87
4.2 Methodology ..89
 4.2.1 Chemicals and reagents ..89
 4.2.2 Preparation of reaction mixture of DBNBS with NO, formed via
 reduction of nitrite. (In situ trapping of NO) 89
 4.2.3 Preparation of reaction products from the reaction between
 DBNBS with NO in water. (Ex situ trapping of NO) 90
 4.2.4 Analysis of gaseous products. MIMS and FTIR 91
 4.2.4.1 Design of the membrane inlet for MIMS 91
 4.2.4.2 FTIR analysis ... 91
 4.2.5 Analysis of liquid products ...92
 4.2.5.1 Ion chromatography and NALDI-MS 92
 4.2.5.2 NALDI-MS ... 92
 4.2.6 DFT study for confirmation of reaction mechanism 93
4.3 Results and Discussion... 94
4.3.1 Gaseous analysis.. 94
4.3.2 Analysis of liquid products ... 100
 4.3.2.1 Ion chromatography .. 100
 4.3.2.2 NALDI-MS ... 103
4.3.3 Nitrous acid formation and decomposition 109
4.3.4 Nitrogen generation and the formation of phenyl radical 110
4.3.5 Ex situ reaction... 113
4.3.6 In situ reaction ... 114
4.3.7 Formation of side products .. 116
4.4 Conclusion .. 119
4.5 References .. 120

Chapter 5: Thermodynamics and kinetics of the reaction of NO with 3,5-dibromo-
4-nitrosobenzene sulfonate .. 127
5.1 Introduction .. 128
5.2 Methodology ... 129
 5.2.1 Chemicals and reagents .. 129
 5.2.2 Thermodynamic and kinetic study of the equilibrium reaction of
 DBNBS with its trans dimer .. 130
 5.2.2.1 Determination of DBNBS dimer-monomer equilibration,
 K_C .. 130
 5.2.2.2 Measurement of the rate of formation of DBNBS
 monomer... 130
5.2.3 Measurement of rate of consumption of DBNBS monomer by saturated solution of nitric oxide (ex situ trapping of NO)...... 131

5.2.4 Measurement of NO by membrane NOx analyser................. 131

5.2.4.1 Ex situ trapping of NO... 132

5.2.4.2 In situ trapping of NO.. 133

5.2.5 Data analysis... 133

5.3 Results and discussion.. 134

5.3.1 Thermodynamic and kinetic analysis of the equilibrium DBNBS and its trans dimer... 134

5.3.1.1 Temperature dependence and thermodynamic analysis of the formation of DBNBS monomer.............................. 136

5.3.2 Generation of NO via nitrosation of ascorbic acid............. 138

5.3.2.1 Effect of varying ascorbic acid concentration on the trapping of NO... 138

5.3.3 Kinetic analysis of the trapping of NO ex situ...................... 140

5.3.3.1 Model development... 140

5.3.3.2 Mass transfer .. 141

5.3.3.3 Effect of pH on the trapping reaction............................ 142

5.3.4 In situ trapping of NO... 145

5.4 Conclusion ... 150

5.5 References... 151

Chapter 6: Determination of the acid dissociation constant of nitrosobenzene sulfonate and 3,5-dimethyl-4-nitrosobenzene sulfonate 154

6.1 Introduction... 155
6.2 **Methodology** .. 158
 6.2.1 Potentiometric pK_a determination ... 158
 6.2.2 Calibration of electrode .. 159
 6.2.3 Theoretical model .. 159
 6.2.4 Computational details ... 161
 6.2.5 Empirical method for predicting pK_a .. 161

6.3 **Results and discussion** .. 162
 6.3.1 Analysis methods for potentiometry ... 162
 6.3.2 Ionic strength correction ... 163
 6.3.3 Method validation .. 164
 6.3.4 Experimental measurement of pK_a values of nitroso compounds 165
 6.3.5 Theoretical calculation of pK_a ... 167
 6.3.6 Comparison of pK_a determination methods .. 169

6.4 **Conclusion** ... 171

6.5 **References** .. 172

Chapter 7: Comparative study of physicochemical properties of ortho substituted aromatic nitroso compounds .. 176

7.1 **Introduction** ... 177

7.2 **Methodology** .. 179
 7.2.1 Material ... 179
 7.2.2 Calculated chemical structure of aromatic nitroso sulfonate ... 179
 7.2.3 Thermodynamics of aromatic nitroso sulfonate dimer/monomer interchange 180
 7.2.3.1 Experimental procedure .. 180
Chapter 7: Monomer-dimer equilibration

7.2.3.2 Monomer-dimer equilibrium constant 181
7.2.3.3 Thermodynamics parameters 182
7.2.4 Kinetics of aromatic nitroso sulfonate dimer/monomer
interchange .. 182
7.2.4.1 Experimental procedure .. 182
7.2.4.2 Activation parameters ΔH^\ddagger, ΔS^\ddagger and ΔG^\ddagger 183

7.3 Results and discussion ... 185
7.3.1 Structure and behaviour of aromatic nitroso sulfonate 185
7.3.2 Monomer-dimer equilibration 186
7.3.3 Temperature dependence of KC 189
7.3.4 Thermodynamics of aromatic nitroso sulfonate dimer/monomer
interchange .. 190
7.3.5 Kinetics of aromatic nitroso sulfonate dimer/monomer
interchange .. 191
7.3.6 Activation parameters .. 192

7.4 Conclusion .. 195
7.5 References ... 196

Chapter 8: Comparative Study of the Trapping of Nitric Oxide by Ortho

8.1 Introduction ... 201
8.2 Methodology ... 202
8.2.1 Material ... 202
8.2.2 Experimental apparatus ... 203
8.2.3.1 Membrane inlet mass spectroscopic analysis 203
8.2.3.2 Fourier transform infrared analysis 204
8.2.4.1 Ion Chromatograph (IC) ... 204
8.2.4.2 NALDI-MS ... 205
8.2.5 Measurement of NO by membrane NOx analyser 205
 8.2.5.1 Ex situ trapping ... 206
 8.2.5.2 In situ trapping ... 206
8.2.6 Measurement of aromatic nitroso sulfonate by UV-Vis stopped
 flow apparatus .. 206
8.3 Results and discussion ... 207
 8.3.1 Gaseous analysis .. 207
 8.3.1.1 MIMS and FTIR ... 207
 8.3.2 Liquid analysis ... 211
 8.3.2.1 Ion chromatography 211
 8.3.2.2 NALDI-MS .. 214
 8.3.3 Reaction mechanism ... 217
 8.3.3.1 Release of nitrogen gas and the formation of aryl radical 217
 8.3.3.2 Formation of aromatic nitro products 218
 8.3.4 Kinetic analysis of the reaction of NO with aromatic nitroso
 sulfonate compounds ... 221
 8.3.5 Model development ... 227
 8.3.6 Comparison of nitroso spin traps 235
8.4 Conclusion ... 239
8.5 References ... 240
Chapter 9: NO trapping in ammonium nitrate solutions and AN emulsion explosives by aromatic nitroso sulfonate compounds 243

9.1 Introduction ... 244

9.2 Methodology ... 246

9.2.1 Material ... 246

9.2.2 Preparation of ammonium nitrate emulsions (standard emulsion) 246

9.2.3 Preparation of emulsion explosive blended with NBS and DBNBS ... 247

9.2.4 Determination of the rate of chemical gassing 247

9.2.6 NO measurement in ammonium nitrate solutions 247

9.2.7 NO measurement during chemical gassing of emulsion explosive 249

9.2.7.1 Glove box ... 249

9.2.7.2 Perspex cylindrical 750 cm³ reactor 251

9.3 Results and discussion ... 252

9.3.1 Ammonium nitrate solution experiments 252

9.3.1.1 Effect of presence of ammonium nitrate solutions 252

9.3.1.2 Effect of ammonium nitrate concentration on the solubility of aromatic nitroso compounds 256

9.3.2 Ammonium nitrate emulsion experiments 259

9.4 Conclusion ... 270

9.5 References ... 271

Chapter 10: Conclusion & Recommendations 274

10.1 Conclusion ... 275

10.2 Recommendations ... 281
10.3 References ... 284

Appendix A: Supporting document for Chapter 3 285

A.1 Synthesis of nitroso compounds .. 286
 A.1.1 Synthesis of DBNBS .. 286
 A.1.2 Synthesis of tetrabutylammonium sulfanilate 286
 A.1.3 3,5-dimethyl-4-nitroso benzene sulfonate (DMNBS) 287
 A.1.3.1 3,5-Dimethylsulphanilic acid 287
 A.1.3.2 3,5-Dimethylsulphanilic Acid, Sodium Salt 287
 A.1.3.3 3,5-Dimethyl-4-nitrosobenzenesulphonate, Sodium Salt (DMNBS) ... 288
 A.1.4 Synthesis of 3,5-dichloro-4-nitrosobenzene sulfonate 288
 A.1.4.1 3,5-Dichlorosulphanilic Acid 288
 A.1.4.2 3,5-Dichloro-4-nitrosobenzenesulphonate, Sodium Salt (DCNBS) .. 289
A.2 C-NMR, H-NMR, IR, NALDI-MS and UV-Vis spectra 290
A.3 Effect of heating NBS to 80 °C 301
A.4 Calibration plot for ion chromatograph 302
A.5 pH change during nitrous acid decomposition 303

Appendix B: Characterisation of 4 ortho-substituted aromatic nitroso sulfonates

by laser desorption time-of-flight mass spectrometry 304
B.1 Introduction .. 305
B.2 Methodology ... 308
 B.2.1 Material .. 308
B.2.2 Calibration of NALDI-MS .. 309
B.2.3 Sample preparation for NALDI-MS ... 310
B.2.4 Mass spectrometry analysis .. 310
B.2.5 Study of oxidation dependence on time .. 310

B.3 Results and discussion ... 311
B.3.1 Blank ... 311
B.3.2 Calibration of the NALDI target using elemental sulfur 311
B.3.3 Characterisation of nitroso compounds...................................... 320
 B.3.3.1 Determining the elemental composition based on isotope peak intensities.. 322
B.3.4 Increased oxidation product formation as a function of time . 327
B.3.5 Identification of liquid products in reaction mixtures............. 329

B.4 Conclusion ... 335

B.5 References .. 336

Appendix C: Supporting document for Chapter 5 341

C.1 Derivation of Equation 5.1 for determining equilibrium constant of DBNBS .. 342
C.2 The effect of pH on the rate of trapping .. 343
C.3 Mass transfer coefficient .. 344
C.4 Output script file from Dynafit software for fitting measured data DBNBS monomer for the ex situ trapping of NO 346
C.5 Derivation of rate law for nitrous acid decomposition 348
C.6 Ordinary differential equations for the in situ trapping reaction of DBNBS with NO ... 350

xxiii
Appendix D: Supporting document for Chapter 7 .. 352

Appendix E: Supporting document for Chapter 8 .. 364

E.1 N2 formation ... 365

E.2 Plots for kinetics measurements of reaction of nitroso with NO
(ex situ and in situ) ... 372
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>Ammonium nitrate</td>
</tr>
<tr>
<td>DBNBS</td>
<td>3,5-dibromo-4-nitrosobenzene sulfonate sodium salt</td>
</tr>
<tr>
<td>DCNBS</td>
<td>3,5-dichloro-4-nitrosobenzene sulfonate sodium salt</td>
</tr>
<tr>
<td>DETC</td>
<td>Diethyldithiocarbamate</td>
</tr>
<tr>
<td>DMNBS</td>
<td>3,5-dimethyl-4-nitrosobenzene sulfonate sodium salt</td>
</tr>
<tr>
<td>EDRF</td>
<td>Endothelium-derived relaxing factor</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EPR</td>
<td>Electron paramagnetic resonance</td>
</tr>
<tr>
<td>FAB-MS</td>
<td>Fast atomic bombarradent MS</td>
</tr>
<tr>
<td>FNOCT</td>
<td>Fluorescent NOCT</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>HNO₂</td>
<td>Nitrous acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IC</td>
<td>Ion chromatography</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography MS</td>
</tr>
<tr>
<td>MNP</td>
<td>2-Methyl-2-nitrosopropane</td>
</tr>
<tr>
<td>MIMS</td>
<td>Membrane inlet MS</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>NALDI-MS</td>
<td>Nanostructured assisted laser desorption ionisation MS</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
</tbody>
</table>
NO$_2$ Nitrogen dioxide
N$_2$O Nitrous oxide
NO$_2^-$ Nitrite
NO$_3^-$ Nitrate
NOCT Nitric oxide cheletropic trap
PIBSA polyisobutylene succinic anhydride
PTIO 2-phenyl-4,4,5,5-tetramethylimidazoline-1-yloxy-3-oxide
O$_2$ Oxygen
O$_2^-$ Superoxide
ONOO- Peroxynitrite
SCR Selective catalytic reduction
SNCR Selective non-catalytic reduction
TLV-TWA Threshold exposure limit time weighted average
UV-Vis Ultraviolet visible