AN INVESTIGATION OF BODY COMPOSITION IN PEOPLE WITH AND WITHOUT CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD)

Joanne Margaret Smart
Ass Dip DMR

A thesis submitted for the degree of Master of Philosophy (Medicine)

University of Newcastle

February 2013
STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Joanne M Smart
ACKNOWLEDGEMENTS

This thesis would not have been possible without the support, love and encouragement of my family. To my husband Adrian who just does those things around me and for me no matter what, a huge thank you. To Mum and Dad, no words can thank you enough for your continued support, love and willingness to listen to me talk every day and at any hour. I know you both now have a much greater appreciation of statistics, body composition and everything else. Uncle Martin, thank you for the timing of your emails of encouragement, love and passion for coffee which have been invaluable. I would also like to acknowledge Adrian’s parents, Keith and Clare Smart and Murray, Janelle and Peter Eckermann for their support of both Adrian and myself during this process. Thank you also to Ranger, who has been my constant companion throughout the writing process. Importantly, I would like to acknowledge the 2 Margarets in my life, Margaret Gilkes, my aunt and Margaret Brooks, my grandmother who will always be my greatest fans.

I would like to acknowledge my supervisors Lisa Wood and Peter Wark for their ongoing support and passion for research. Lisa, this whole document would not have been possible without you. Your support, encouragement, wisdom, advice, availability, knowledge and friendship have and will continue to be invaluable. To the ‘diet team’, Hayley Scott, Amber Smith, Megan Jensen and Bron Berthon, what a pleasure it has been to work with you and to share and be encouraged by you. I know I will be seeing all your names in lights in the future.

Thank you to the clinical and laboratory team in Respiratory Medicine, within Hunter Medical Research Institute (HMRI) for their assistance and encouragement throughout my Masters. Thank you to Vanessa McDonald for her involvement and to Patrick McElduff and Heather Powell, thank you for
your time and willingness to listen and assist when I was frustrated by statistics. To Bridgette Ridewood, Michelle Gleeson and Kelly Fakes, thank you for processing all the samples collected as part of this project. I would also like to thank Lynn Clark, Narelle Eddington and Karla Lemmert from Hunter Area Pathology (HAPS) for their assistance with processing and analysis of the blood samples collected for the project. Thank you also to the HMRI team for their assistance with recruitment for the study.

My research journey would not have begun or have been possible without the encouragement and enthusiasm of Professor Robert Batey. This thesis is an acknowledgement to him.

Clinical research would not occur without the willingness of people to volunteer to participate in research. I sincerely thank those who have participated in this study and those who have continued to volunteer for studies I have worked on – thank you, you amaze me.

Finally, I would like to thank my God, who continues to open doors, carry me through, provide and teach me in the ways I should go. I have learnt so much throughout this process, been supported so much through this process and feel blessed and encouraged for what the future may bring. Thank you.
TABLE OF CONTENTS

STATEMENT OF ORIGINALITY ... I
ACKNOWLEDGEMENTS .. II
TABLE OF CONTENTS ... IV
LIST OF FIGURES .. VI
LIST OF TABLES .. VII
ABBREVIATIONS .. VIII
PUBLICATIONS ARISING FROM THIS THESIS XI
SYNOPSIS .. XII

CHAPTER 1 INTRODUCTION ... 14
 1.1 CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) 15
 1.2 INFLAMMATION AND COPD ... 15
 1.2.1 DETERMINANTS OF INFLAMMATION IN COPD 17
 1.3 BODY COMPOSITION ... 21
 1.3.1 METHODS OF ASSESSING BODY COMPOSITION 22
 1.3.2 DETERMINANTS OF BODY COMPOSITION 25
 1.3.3 BODY COMPOSITION AND INFLAMMATION 35
 1.4 BODY COMPOSITION AND SURVIVAL IN COPD 36
 1.4.1 THE OBESITY PARADOX .. 36
 1.4.2 BODY COMPOSITION CHANGES IN COPD 37
 1.4.3 BODY COMPOSITION AND INFLAMMATION IN COPD 40
 1.5 GENERAL SUMMARY .. 40
 1.6 HYPOTHESIS ... 41
 1.7 AIMS .. 42

CHAPTER 2 A CHARACTERISATION OF BODY COMPOSITION, INFLAMMATION AND LUNG FUNCTION IN EX-SMOokers WITH AND WITHOUT COPD 43
 2.1 INTRODUCTION ... 44
 2.2 METHODS .. 45
 2.2.1 SUBJECT CHARACTERISTICS .. 45
 2.2.2 STUDY DESIGN ... 46
 2.2.3 CLINICAL ASSESSMENT .. 47
 2.2.4 BIOCHEMICAL ANALYSIS ... 53
 2.2.5 STATISTICAL ANALYSIS .. 54
 2.3 RESULTS .. 56
 2.3.1 LUNG FUNCTION, BODY COMPOSITION AND INFLAMMATION BY DISEASE GROUP 56
 2.3.2 BODY COMPOSITION, LUNG FUNCTION AND INFLAMMATION BY BMI CATEGORY 63
 2.3.3 ASSOCIATION BETWEEN BODY COMPOSITION AND LUNG FUNCTION 78
 2.3.4 ASSOCIATIONS BETWEEN LUNG FUNCTION AND INFLAMMATION 84
 2.4 DISCUSSION ... 89

CHAPTER 3 DIET, PHYSICAL ACTIVITY AND BODY COMPOSITION IN EX-SMOokers 97
 3.1 INTRODUCTION ... 98
 3.2 METHODS .. 100
 3.2.1 STUDY DESIGN ... 100
 3.2.2 BODY COMPOSITION ASSESSMENT 101
 3.2.3 DIETARY INTAKE ASSESSMENT ... 101
 3.2.4 PHYSICAL ACTIVITY ASSESSMENT 103
 3.2.5 STATISTICAL ANALYSIS .. 105
 3.3 RESULTS .. 107
 3.3.1 DIETARY NUTRIENT INTAKE AND PHYSICAL ACTIVITY BY DISEASE GROUP 107
 3.3.2 ASSOCIATIONS BETWEEN BODY COMPOSITION AND MACRONUTRIENT INTAKE 113
 3.3.3 ASSOCIATIONS BETWEEN BODY COMPOSITION AND MICRONUTRIENT INTAKE 114
 3.3.4 ASSOCIATION BETWEEN BODY COMPOSITION AND CAROTENOID INTAKE 116
 3.3.5 ASSOCIATIONS BETWEEN BODY COMPOSITION AND PUFA INTAKE 117
 3.3.6 ASSOCIATIONS BETWEEN BODY COMPOSITION AND PHYSICAL ACTIVITY 118
 3.4 DISCUSSION ... 121

CHAPTER 4 GENERAL DISCUSSION .. 129
4.1 CHAPTER 2: BODY COMPOSITION AND LUNG FUNCTION .. 130
4.2 CHAPTER 3: BODY COMPOSITION, DIET AND PHYSICAL ACTIVITY 132
4.3 FUTURE DIRECTIONS ... 134
4.4 CONCLUSION ... 135

REFERENCES ... 137
APPENDIX 1: INFORMATION SHEET AND CONSENT FORM 163
APPENDIX 2: CASE REPORT FORM (CRF) ... 169
APPENDIX 3: MODIFIED SHUTTLE WALK TEST (MSWT) WORKSHEET 175
APPENDIX 4: ST GEORGE’S RESPIRATORY QUESTIONNAIRE (SGRQ) 177
APPENDIX 5: Pedometer Instructions and Step Count Diary 183
APPENDIX 6: IPAQ QUESTIONNAIRE – 7 DAY LONG FORM 185
LIST OF FIGURES

FIGURE 1.1: SMOKING, LUNG FUNCTION AND COPD RISK ... 18
FIGURE 1.2: FACTORS ASSOCIATED WITH BODY COMPOSITION AND LUNG FUNCTION IN EX-SMOKERS 42
FIGURE 2.1: FLOW CHART OF STUDY SUBJECTS ... 47
FIGURE 2.2: OAD SEVERITY CLASSIFICATION – GOLD CRITERIA .. 48
FIGURE 2.3: TOTAL BODY DEXA SCAN SHOWING REGIONAL AREAS 53
FIGURE 2.4: FITTED LINEAR REGRESSION MODEL (ADJUSTED FOR AGE AND GENDER) SHOWING THE ASSOCIATION BETWEEN BMI AND ANDROID/GYNOID FAT RATIO (%) IN EX-SMOKERS WITH AND WITHOUT COPD .. 64
FIGURE 2.5: FITTED LINEAR REGRESSION MODEL (ADJUSTED FOR AGE AND GENDER) SHOWING THE ASSOCIATION BETWEEN BMI AND TOTAL BMC IN EX-SMOKERS WITH AND WITHOUT COPD. 70
FIGURE 2.6: TOTAL Lean Muscle mass by BMI and smoking status .. 71
FIGURE 2.7: TOTAL Fat mass by BMI and smoking status .. 71
FIGURE 2.8: TOTAL Bone Mineral Content (BMC) by BMI and smoking status 71
FIGURE 2.9: FITTED LINEAR REGRESSION MODEL SHOWING THE ASSOCIATION BETWEEN BMI AND FVC% PREDICTED IN EX-SMOKERS WITH AND WITHOUT COPD .. 74
FIGURE 2.10: CRP BY BMI AND SMOKING STATUS ... 77
FIGURE 2.11: IL6 BY BMI AND SMOKING STATUS ... 77
FIGURE 2.12: LEPTIN BY BMI AND SMOKING STATUS ... 78
FIGURE 3.1: FLOW CHART OF STUDY SUBJECTS (DIET AND PHYSICAL ACTIVITY) 101
FIGURE 3.2: IPAQ CLASSIFICATION OF PHYSICAL ACTIVITY LEVELS 104
FIGURE 4.1: FINAL MODEL – BODY COMPOSITION AND MODIFIABLE FACTORS IN EX-SMOKERS 135
LIST OF TABLES

TABLE 2.1: Subject Characteristics ... 56
TABLE 2.2: Subject anthropometric body composition characteristics 58
TABLE 2.3: Subject total and regional lean muscle mass characteristics† 59
TABLE 2.4: Subject total and regional body fat mass characteristics† 60
TABLE 2.5: Subject total and regional bone mineral content (BMC) characteristics† 61
TABLE 2.6: Subject airway (AI) and systemic (SI) inflammation characteristics 61
TABLE 2.7: Anthropometric body composition variables by BMI and Smoking status/COPD categories ... 63
TABLE 2.8: Total and regional lean mass variables by BMI and Smoking status/COPD categories .. 65
TABLE 2.9: Total and regional body fat variables by BMI and Smoking status/COPD categories .. 67
TABLE 2.10: Total and regional bone mineral content (BMC) variables by BMI and Smoking status/COPD categories ... 69
TABLE 2.11: Lung function variables by BMI and Smoking status/COPD categories 72
TABLE 2.12: Airway and systemic inflammation variables by BMI and Smoking status/COPD categories .. 75
TABLE 2.13: Relationships between anthropometric body composition measurements and lung function, health related quality of life and walk test in ex-smokers (n=86) 78
TABLE 2.14: Relationships between total and regional lean muscle mass and lung function, health related quality of life and walk test in ex-smokers (n=90) 80
TABLE 2.15: Relationships between total and regional fat mass and lung function, health related quality of life and walk test in ex-smokers (n=90) .. 81
TABLE 2.16: Relationships between total and regional bone mineral content (BMC) and lung function, health related quality of life and walk test in ex-smokers (n=90)† . 83
TABLE 2.17: Relationships between airway inflammation and lung function, health related quality of life and walk test in ex-smokers. ... 84
TABLE 2.18: Relationships between systemic inflammation (CRP, IL-6, Leptin) and lung function, health related quality of life and walk test in ex-smokers. 85
TABLE 2.19: Relationships between systemic inflammation (CRP, IL-6, Leptin) and body composition in ex-smokers ... 86
TABLE 2.20: Multiple linear regression models describing body composition and systemic inflammation predictors of lung function (FEV₁, FVC and FEV₁/FVC) in ex-smokers. 87
TABLE 3.1: Macronutrient and Micronutrient Daily Dietary Intake† by Group 107
TABLE 3.2: Carotenoid Daily Dietary Intake† by Group 109
TABLE 3.3: Polyunsaturated Fatty Acid (PUFA) dietary intake† by Group 110
TABLE 3.4: Physical Activity (PA) Variables by Group. 111
TABLE 3.5: RELATIONSHIPS BETWEEN BODY COMPOSITION AND DAILY DIETARY MACRONUTRIENT INTAKE† IN EX-SMOKERS (N=84). ... 113

TABLE 3.6: RELATIONSHIPS BETWEEN BODY COMPOSITION AND DAILY DIETARY VITAMIN INTAKE† IN EX-SMOKERS (N=84). ... 114

TABLE 3.7: RELATIONSHIPS BETWEEN BODY COMPOSITION AND DAILY DIETARY MINERAL INTAKE† IN EX-SMOKERS (N=84). ... 115

TABLE 3.8: RELATIONSHIPS BETWEEN BODY COMPOSITION AND DAILY DIETARY CAROTENOID INTAKE† IN EX-SMOKERS (N=84). ... 116

TABLE 3.9: RELATIONSHIPS BETWEEN BODY COMPOSITION AND DIETARY PUFA INTAKE† IN EX-SMOKERS (N=79) ... 117

TABLE 3.10: RELATIONSHIPS BETWEEN BODY COMPOSITION AND PHYSICAL ACTIVITY† IN EX-SMOKERS .. 118

TABLE 3.11: MULTIPLE LINEAR REGRESSION MODELS DESCRIBING DAILY DIETARY INTAKE, PHYSICAL ACTIVITY AND SYSTEMIC INFLAMMATION PREDICTORS OF BODY COMPOSITION (TOTAL BODY LEAN, FAT AND BMC) IN EX-SMOKERS. ... 119
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6MWT</td>
<td>6 Minute Walk Test</td>
</tr>
<tr>
<td>ASMMI</td>
<td>Appendicular Skeletal Muscle Mass Index</td>
</tr>
<tr>
<td>BIA</td>
<td>Bioelectrical Impedance Analysis</td>
</tr>
<tr>
<td>BMC</td>
<td>Bone Mineral Content</td>
</tr>
<tr>
<td>BMD</td>
<td>Bone Mineral Density</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>CRP</td>
<td>C Reactive Protein</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>DEXA</td>
<td>Dual-Energy X-ray Absorptiometry</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic Acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>eNO</td>
<td>Exhaled Nitric Oxide</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic Acid</td>
</tr>
<tr>
<td>FEF$_{25-75%}$</td>
<td>Forced Expiratory Flow 25 – 75%</td>
</tr>
<tr>
<td>FEV$_1$</td>
<td>Forced Expiratory Volume in one second</td>
</tr>
<tr>
<td>FFM</td>
<td>Fat Free Mass</td>
</tr>
<tr>
<td>FFMI</td>
<td>Fat Free Mass Index</td>
</tr>
<tr>
<td>FFQ</td>
<td>Food Frequency Questionnaire</td>
</tr>
<tr>
<td>FM</td>
<td>Fat Mass</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced Vital Capacity</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>HRQoL</td>
<td>Health Related Quality of Life</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IPAQ</td>
<td>International Physical Activity Questionnaire</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>LTB₄</td>
<td>Leukotriene Beta 4</td>
</tr>
<tr>
<td>MET</td>
<td>Metabolic Equivalent Task</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>MSWT</td>
<td>Modified Shuttle Walk Test</td>
</tr>
<tr>
<td>n-3 LC</td>
<td>Omega-3 Long Chain</td>
</tr>
<tr>
<td>OAD</td>
<td>Obstructive Airway Disease</td>
</tr>
<tr>
<td>PGE₂</td>
<td>Prostaglandin E₂</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated Fatty Acid</td>
</tr>
<tr>
<td>RMR</td>
<td>Resting Metabolic Rate</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>SaO₂</td>
<td>Arterial Oxygen Saturation</td>
</tr>
<tr>
<td>SGRQ</td>
<td>St George’s Respiratory Questionnaire</td>
</tr>
<tr>
<td>TLC</td>
<td>Total Lung Capacity</td>
</tr>
<tr>
<td>TLR-4</td>
<td>Toll Like Receptor 4</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour Necrosis Factor-Alpha</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
ABSTRACTS:

2. **Smart JM**, Wark PA, McDonald VM, Wood LG. Low levels of body fat and obstructive airway disease in ex-smokers. Australasian Medical Journal. (Perth, Australia, December 2010 – oral presentation)

3. **Smart JM**, Wark PA, McDonald VM, Wood LG. Body composition in ex-smokers with and without airflow obstruction. Obesity Research & Clinical Practice. 4: S30; 2010. (Sydney, Australia, October 2010 – poster presentation)

SYNOPSIS

Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease, characterised by poorly reversible airflow limitation that is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases, particularly cigarette smoke. The primary risk factor for COPD is cigarette smoking. Airway and systemic inflammation are features of COPD. The increasing prevalence and burden of COPD leads us to look at other factors that may influence the development and progression of COPD.

Body composition, in particular low levels of fat free mass (FFM) is associated with worse survival and/or severity of COPD. Determinants of body composition include lifestyle factors such as dietary intake, physical activity patterns and smoking status, as well as age and gender. This thesis aimed to firstly examine the association between body composition, inflammation and lung function in healthy controls versus ex-smokers with or without COPD (Chapter 2). Secondly, it aimed to examine dietary intake, physical activity and inflammation as determinants of body composition in ex-smokers (Chapter 3).

In Chapter 2, positive associations were observed between total and regional lean muscle mass and bone mineral content (BMC) and lung function in ex-smokers. Conversely negative associations were observed between body fat mass and lung function in ex-smokers. An increase in body mass index (BMI) was associated with an increase in body fat, lean muscle mass and BMC in ex-smokers without COPD. This was not seen in those with COPD, with the presence of disease appearing to modify the effects of weight gain. Lean muscle mass was also associated with better perceived quality of life and found to be negatively associated with systemic inflammation (CRP, IL-6, leptin).
In Chapter 3, a positive association between lean muscle mass and dietary intake of nutrients found in fruit, vegetables, whole grains and fish was identified. Conversely, a negative association was observed between total body fat mass and dietary intake of nutrients found in fruit, vegetables, whole grains and fish. Dietary fat intake, physical activity and systemic inflammation were strong predictors of total body lean and fat mass in ex-smokers, but were not predictors of total body BMC.

The protective effect of a high BMI in COPD does not appear to be due to an increase in fat mass but due to the presence of lean muscle mass. Reducing dietary fat intake, increasing physical activity and reducing systemic inflammation were identified as potential modifiable factors to improve and maintain lean muscle mass in ex-smokers. Assessment of diet and physical activity should be included in the management and care of those at risk of and those with COPD. Interventions targeting inflammation such as statins, omega-3 fatty and antioxidants may further improve outcomes in those ex-smokers with COPD.