QUALITY-ORIENTED SOFTWARE PRODUCT LINE

By

Lei Tan

(MSc)

A thesis submitted in total fulfilment of the requirement for the degree

of Master of Philosophy

School of Electrical Engineering & Computer Science

The University of Newcastle

Callaghan 2308, NSW, Australia

May, 2013
Abstract

In software engineering, quality evaluation and achievement are difficult tasks because of the complexity of the software systems. Software reuse is one of the most promoted ways to improve software quality. Software Product Line Engineering (SPLE) is a newly established reuse-based paradigm, which has been well-recognised by the industry. SPL has been successfully applied by the companies such as HP, Philips, Siemens, TomTom and so on.

Instead of developing individual software products from scratch, SPL aims to develop a set of similar software systems which share commonalities within a particular application domain. In software product lines (SPLs), reusable assets are developed from the beginning with the view that they will be used in other similar software products. Once they have been successfully developed, the individual product development follows a rigorous customisation process.

Quality-related issues for product lines, on both requirement and architectural levels, are the main focus of my research. To enhance quality-oriented product configuration, we have proposed an approach of measuring the contributions of software features to quality attributes. Features are compared in a pair-wise fashion, and the result is used to generate a ranking list, in which is indicated the relative importance of features to software quality achievement. The ranking list of features is able to greatly help software engineers to understand the factors that impact on final quality, thus assisting product configuration of SPLs. Additionally, the efficiency of feature-based configuration should also be improved, as configuration is normally a time-consuming and error-prone task. To improve the efficiency of configuration, we have taken into account of the dependencies between features,
and adapted some classical algorithms to reduce errors and rollbacks possibly occurring in
the product configuration. We have also considered quality issues in the process of soft-
ware product line architecture development. A quality-oriented architectural framework
has been proposed to specify various views and components composition for improving
the quality awareness at the architectural level.

We believe that software quality should be emphasised and modelled throughout the
whole process of SPL development, rather than been focused on in a particular phase
in the development. We have proposed an aspect-oriented SPL framework, in which
we have introduced aspect-oriented modelling for both feature modelling and reference
architecture design. The proposed framework is expected to model the impact of the non-
functional requirements (NFRs) better, and to deal with software quality from requirement
engineering to architecture design in a systematic way in SPL development.
DECLARATION

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968. **Unless an Embargo has been approved for a determined period.
ACKNOWLEDGMENTS

I would like to thank my supervisors Dr Yuqing Lin and A/Professor Huilin Ye for their support and guidance over the past two years. Their encouragement, constructive criticism, and incredible enthusiasm have provided the basis for these studies.

Thanks must go to my colleagues and friends, Guoheng Zhang and Peng Wang for their advice and experience which make this thesis possible.

I wish to thank my wife Chenchen Jiang, and my kids Jason and Alison, who accompanied and supported me through the whole process.
Table of Contents

1 Introduction
1.1 Introduction ... 8
1.2 Problem Statement ... 10
1.3 Overview of Research 12
1.4 Contributions ... 15
1.5 Structure of Thesis ... 17
1.6 The List of Publications 18

2 Background
2.1 Software Product Line Engineering 20
2.2 Domain Engineering ... 22
2.2.1 Variability Management 23
2.2.2 Feature Modelling ... 24
2.2.3 Reference Architecture 27
2.3 Application Engineering 29
2.3.1 Product Configuration 29

3 Quality-Oriented Feature Ratings
3.1 Introduction .. 32
3.2 Literature Review ... 34
3.2.1 Non-Functional Properties Prediction 34
3.2.2 F-SIG ... 35
4 Efficient Product Configuration

4.1 Introduction ... 53
4.2 Literature Review .. 55
4.2.1 Feature Model Analysis 55
4.2.2 Product Configuration Approaches 57
4.2.3 Summary ... 59
4.3 Approach Overview ... 60
4.4 Vertex Cover Problem and Simulated Annealing Algorithm 65
4.5 Experiments and Results .. 67
4.5.1 Library System Feature Model 67
4.5.2 Random Systems ... 73
4.6 Summary ... 75
4.6.1 Effectiveness of Our Approach 75
4.6.2 Future Work .. 75

5 Quality-Oriented SPL Architecture 77
5.1 Introduction ... 77
5.2 Literature Review .. 78
5.2.1 FORM .. 78
5.2.2 PuLSE ... 79
5.2.3 KobrA .. 80
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Framework of SPLE</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>An Example of a Feature Model</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Examples of Dead Features</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Rating update for “Ease of Use”</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Actual Scores for Each Feature of “Ease of Use”</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>A Variation Point (V P) and its Variants</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>The Dependencies among Variants</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Transform a Feature Model into a Directed Graph</td>
<td>65</td>
</tr>
<tr>
<td>4.4</td>
<td>A Feature Model of Library Systems</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>Our Approach contributes to QADA</td>
<td>87</td>
</tr>
<tr>
<td>5.2</td>
<td>Developing Quality View</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Developing Tradeoff View</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>The Structure of PACS</td>
<td>92</td>
</tr>
<tr>
<td>5.5</td>
<td>The Partial Reference Architecture of PACS</td>
<td>93</td>
</tr>
<tr>
<td>5.6</td>
<td>Security and Performance Tradeoff</td>
<td>95</td>
</tr>
</tbody>
</table>
List of Tables

3.1 Quality Attributes and Contributing Features ... 44
3.2 Relative Importance Matrix given by the First Domain Expert 46
3.3 Fixed Matrix given by the First Domain Expert ... 46
3.4 Relative Importance Matrix given by the Second Domain Expert 47
3.5 Feature Comparisons given by the First Domain Expert 47
3.6 Updated Rating based on the Opinion of the First Domain Expert 48

4.1 The Dependency Relationships among Variants in a Feature Model 69
4.2 Max Configuration Coverage of each VP ... 70
4.3 A Sequence of VPs which covers Feature Model ... 70
4.4 A Sequence of VPs after a Decision made at VP8 .. 71
4.5 Depth-First Configuration Group(left) and Optimisation Configuration Group(right) 72
4.6 Group Comparison of Average Figures. ... 73
4.7 Experiment Result of Random Systems ... 74

5.1 Quality Attributes Relationships ... 90
5.2 Architecture Options by Tradeoff ... 91
5.3 Quality Attributes and Related Components (connectors, ports) 93