THE HEP573 STUDY:

A randomised, double-blind, placebo-controlled clinical trial of silymarin alone, and silymarin combined with antioxidants in chronic hepatitis C

Sarah (Ses) Jane Salmond
BA. (MU, NZ), N.D., D.B.M., D.H., D.N.

A thesis submitted for the Degree of Doctor of Philosophy
School of Medicine and Public Health
University of Newcastle
NSW Australia

November 2012
STATEMENT OF ORIGINALITY

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

STATEMENT OF COLLABORATION

Experts were consulted when necessary in the design and analysis stages as specified in the acknowledgments section and in Chapter 3 Methodology.

Acknowledgment of Authorship

The Study protocol design and coordination, analysis and reporting of the results were all undertaken by the author.

Date.
DEDICATION

This work is dedicated to the late Mr Robert John Salmond, my father, who taught me reverence for life, the art of perseverance and the wonder of humour. It is also dedicated to the loving memory of Ms Riwia Whaanga, Dr Lisa MacDonald, Ms Julie Velthuys and Mr Sam Richardson (who all died during the writing of this dissertation).

This also honours all those pioneers, ahead of their time in their respective fields, who willingly embraced other paradigms but, in so doing, needed to weather the attitude of their colleagues until a change in the dominant mindset prevailed.
ACKNOWLEDGMENTS

This thesis has been a decade in the making and I am indebted to the following people for their stewardship, support, encouragement and wise counsel.

- Professor Robert Batey, principal supervisor, pioneer, teacher and clinician;
- Professor Michael Hensley, University of Newcastle, cosupervisor;
- Professor Jacob George and Associate Professor Simone Strasser, the other two principal investigators in this multicentre trial;
- Dr Karen Byth, Biomedical statistician, Westmead Millennium Institute, University of Sydney;
- Professor Geoff McCaughan and Dr David Koorey, Royal Prince Alfred Hospital;
- Professor Geoff Farrell, Dr Rita Linn and Dr Dev Samarasinghe, Storr Liver Unit (SLU), Westmead Hospital;
- Dr Jon Watson, John Hunter Hospital;
- Mr Lynn Clark and Ms Narelle Eddington from Hunter Area Pathology Service (HAPS);
- John Hunter Medical Outpatients staff and HAPS blood collection staff;
- Hepatitis C Nurse consultants: Ms Susan Holdaway, Ms Frances Tenison, Ms Sue Mason, Ms Sinead Sheilds, Ms Louise Campbell, Ms Liz Ianna and Ms Tracey Jones;
- Ms Seng Kee Teo, Ms Tiffany Moyle, Ms Keshni Sharma, Ms Lee Russell and Dr Priyanka Bandara, SLU;
- Ms Relana To, Technician, AW Morrow Gastroenterology Department, RPAH;
- Mr Peter Guinness, Centenary Institute;
- Ms Vicki Jepson, Hunter New England Area Health Service;
- Dr Lisa Woods for technical advice on F₂-isoprostanes;
- Dr Trevor Mori and colleagues for analysing F₂-isoprostane samples;
- Dr Leon Adams and Ric Rossi for analysing the Hepascore and Fibrotest samples;
- Professor Bill Rawlinson for analysing the hepatitis C viral load (PCR HCV RNA) samples;
- Professor Ian Whyte, Pharmacology Department, University of Newcastle, for his independent safety review of the Study;
• The staff at the University of Newcastle Research Office and School of Medicine and Public Health;
• Ms Karen Kincaid, Office of Graduate Studies, University of Newcastle.
• Ms Debbie Booth, Medical librarian at the Auchmuty Library, University of Newcastle;
• Ms Adrienne Kirby, NHMRC Clinical Trials Centre, for randomisation method;
• Ms Janaki Amin, National Centre for HIV epidemiology and Clinical Research;
• Hospital trial pharmacists for dispensing the trial medications;
• Mr Bob Power and Mr Michael Power from Phytomedicine, who provided the trial preparations for the Study;
• Professor Alan Bensoussan, Mr Nick Burgess, Mr Michael Thomsen, Ms Melanie Koeman, Mr Ian Breakspear, Ms Berris Borgoyne, Ms Jenny Adams, Mr Peter de Ruyter, Ms Assunta Hunter, Ms Helen Stevenson, Ms Derrian Turner, Ms Jodie Lowe-Ariel, Ms Nadine Campbell, Ms Rhoslyn Humphreys, Mr David Culley, Ms Ruth Kendon, Ms Leah Hechtman, Ms Kylie Seaton, Mr Andrew Whitfield-Cooke, Ms Jacqui Fahey, Ms Kathy Harris, Ms Rita Erba-Cozzi, Dr Lisa Macdonald, Dr Mary Foley, Dr Hans Wohlmuth, Dr Kaye Brock, Dr Karen Bridgman and Dr Sue Evans for their expertise;
• Ms Vicki Kotsirilos Integrative Medicine Grant;
• John Hunter Charitable Trust Grant;
• Hunter Medical Research Institute for media work;
• National Herbalists Association of Australia Board of Directors; 2001-2008;
• Mr Stuart Loveday and Mr Paul Harvey along with other colleagues from the Hepatitis Council of NSW who provided logistical support for this Study;
• Ms Jodie Lowe-Ariel and Ms Jacqui Bushell who were my locums at Leichhardt Womens’ Community Health Centre (LWCHC);
• LWCHC staff from 2001 to 2012 especially Ms Roxanne McMurray, Ms Slava Cruz, Ms Lindsay Keredmischief, Dr Lisa Macdonald, Dr Mary Foley and Ms Mia Rose;
• Ms Debi Toman, Ms Joy Meyer, Ms Jan Hinde and Ms Marie-Pierre Cleret;
• Tuesday nighters;
• Ms Denele Crozier, Ms Monica Finetti, Ms Lucie Frankham, Ms Steph Glover, Ms Michele Saffery along with Judy, Mark, Rebecca and Simon Salmond;
• Hep573 Study participants;
Professional editing help was received from Dr Viviane Morrigan for referencing, Ms Joan Baggs, grammar and formatting, and Ms Rhoslyn Humphreys formatting and layout.
CONTENTS

CHAPTER 1 .. 1
Introduction ... 1
Scientific Aims of the Trial ... 3
A Complementary Medicine Clinical Trial in a Medical Setting?.................................... 3
How is the Hep573 Study Original and Unique?.. 4
The Significance of This Research .. 4

CHAPTER 2 .. 5
Literature Review .. 5
Epidemiology .. 6
General Background on Hepatitis C Infection .. 6
World Figures and Geographical Distribution .. 6
HCV Genotype Distribution .. 6
Australian Data .. 7
Clinical Implications for the Management of the CHC Patient .. 8
Antiviral Therapy .. 9
Treatment options, outcomes and side effects ... 10
Numbers treated in Australia annually .. 10
New antiviral treatments .. 11
Quality of Life in Hepatitis C Patients ... 12
Symptoms Reported by Those Living With Hepatitis C in Australia 13
Quality of Life Pre and Post Diagnosis with HCV Infection ... 14
Quality of Life and Comorbidities .. 14
Quality of Life and Disease Severity .. 15
Quality of Life and Antiviral Therapy ... 15
Quality of Life and Complementary Medicine .. 15
Complementary Medicine ... 16
Use of and Expenditure on Complementary Medicine .. 16
The Numbers of People Using Complementary Medicine in Liver Clinics 17
The Philosophy of Herbal Medicine ... 18
The Philosophy of Naturopathy ... 20
The Naturopathic Protocol in the CHC Patient .. 21
Natural History .. 23
Acute Hepatitis C .. 23
Chronic Hepatitis C .. 23
Factors Influencing the Natural History .. 24
 Modifiable and nonmodifiable factors in fibrosis progression .. 25
 Hepatic steatosis, insulin resistance and liver injury ... 27
Diabetes ... 28
Alcohol and chronic hepatitis C ... 29
P450 isoenzymes in ROS induction .. 30
Antioxidant Systems .. 31
Nonenzymatic defences .. 31
Enzymatic defences .. 31
Thiol ... 31
Glutathione ... 32
Nrf2/ARE Pathway .. 33
Pathogenesis of HCV Infection and Oxidative Stress .. 34
Virology ... 35
Oxidative stress in HCV Infection .. 36
Immune Response to HCV Infection .. 38
Th1 helper cytokine profile in viral clearance .. 39
Host defences, how the host tries to combat HCV infection 39
Viral defences, how HCV proteins alter the host immune response 40
Genetic profiles and HCV clearance .. 41
IL28B polymorphism and response to treatment 41
HLA Class II alleles and viral clearance ... 42
Histological Damage ... 42
Liver cells and liver injury ... 42
Cell death ... 43
Apoptosis and necrosis .. 43
Inflammation .. 45
Hepatic fibrosis ... 45
Hepatic cirrhosis .. 47
Measures of Oxidative Stress ... 47
Lipid peroxidation ... 47
Malondialdehyde .. 48
F2 isoprostanes ... 49
Independent support for choice of F2 isoprostanes 49
Measures of Liver Inflammation ... 50
Alanine Aminotransferase ... 50
Normal ALT and liver histology ... 51
Fas ligand ... 55
Fibrosis and Cirrhosis Measures ... 55
Silymarin in Liver Disease Including Chronic Hepatitis C 57
Pharmacological Actions of Silymarin .. 58
Silymarin Has Direct Anti-HCV Activity (in vitro) 58
Silymarin Has Direct Anti-HCV Activity (Intravenously) 61
Previous Silymarin Dosing Regimens in Alcoholic Liver Disease 61
Oral Silymarin in Chronic Hepatitis C ... 63
Silymarin and Pharmacokinetics .. 66
Silymarin Summary .. 67
Clinical Trials Using Antioxidants ... 88
Antioxidant Therapy in Conditions Other than HCV 88
Summary of Antioxidant Research in CHC 73
Clinical trials using antioxidants in CHC ... 74
Hep573 Study Interventions ... 76
Silymarin ... 77
Antioxidant Intervention .. 77
Hep573 Study Pharmacology ... 77
Evidence of Pharmacology and Mechanisms of Action 78
Evidence of Mechanisms of Action Pre-2003 81
Evidence of Mechanisms of Action Post-2003 87
Summary of Evidence of Mechanisms of Action 104

CHAPTER 3 .. 107
Methodology .. 107
Study Design .. 107
Ethics Committee Approval .. 107
Therapeutic Goods Administration (TGA) .. 107
Participant Recruitment ... 108
Participant Selection .. 108
Inclusion criteria ... 108
Exclusion criteria ... 108
Complementary Medicines Exclusions .. 271
APPENDIX E .. 275
Alcohol, Drugs, Diet and Symptoms Questionnaires ... 275
APPENDIX F .. 283
Conducting a Complementary Medicine Trial, a Checklist 283
AWARD, PUBLICATIONS AND PRESENTATIONS FROM THIS STUDY

AWARD

Douglas Piper Young Investigator Award Clinical Science, 22 October 2010
Gastroenterological Society of Australia

RESEARCH PUBLICATIONS AND PRESENTATIONS

Publications

Peer-reviewed journal articles

Conference proceedings

Book chapters

(For complete list see Appendix A.)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALA/LA</td>
<td>alpha lipoic acid/lipoic acid/thioctic acid</td>
</tr>
<tr>
<td>ALD</td>
<td>alcoholic liver disease</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>AP-1</td>
<td>activator protein-1</td>
</tr>
<tr>
<td>ARE</td>
<td>antioxidant response element</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>CAM</td>
<td>complementary and alternative medicine</td>
</tr>
<tr>
<td>CAT</td>
<td>catalase</td>
</tr>
<tr>
<td>CHC</td>
<td>chronic hepatitis C</td>
</tr>
<tr>
<td>CLD</td>
<td>chronic liver disease</td>
</tr>
<tr>
<td>CM</td>
<td>complementary medicine</td>
</tr>
<tr>
<td>C of A</td>
<td>certificate of analysis</td>
</tr>
<tr>
<td>CTL</td>
<td>cytotoxic T lymphocyte</td>
</tr>
<tr>
<td>CR</td>
<td>calorie restriction</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal-regulated protein kinase</td>
</tr>
<tr>
<td>ESLD</td>
<td>end-stage liver disease</td>
</tr>
<tr>
<td>EVR</td>
<td>early virological response</td>
</tr>
<tr>
<td>F</td>
<td>fibrosis staging on liver biopsy</td>
</tr>
<tr>
<td>FM</td>
<td>fibrosis markers</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatography coupled to mass spectrometry</td>
</tr>
<tr>
<td>GGT</td>
<td>gamma-glutamyltranspeptidase</td>
</tr>
<tr>
<td>GPx</td>
<td>glutathione peroxidase</td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione (reduced)</td>
</tr>
<tr>
<td>GSSG</td>
<td>glutathione (oxidised)</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione transferase</td>
</tr>
<tr>
<td>HA</td>
<td>hyaluronic acid</td>
</tr>
<tr>
<td>HCC</td>
<td>hepatocellular carcinoma</td>
</tr>
<tr>
<td>HCV</td>
<td>hepatitis C virus</td>
</tr>
<tr>
<td>HCV RNA</td>
<td>hepatitis C virus ribonucleic acid</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HQLQ™</td>
<td>hepatitis quality of life questionnaire</td>
</tr>
<tr>
<td>HRQoL</td>
<td>health related quality of life</td>
</tr>
<tr>
<td>HSC</td>
<td>hepatic stellate cell</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>INN</td>
<td>International Nonproprietary Name</td>
</tr>
<tr>
<td>ISO</td>
<td>F_2-Isoprostanes</td>
</tr>
<tr>
<td>IVDU</td>
<td>intravenous drug use</td>
</tr>
<tr>
<td>KIR</td>
<td>killer cell immunoglobulin-like receptor</td>
</tr>
<tr>
<td>MCP</td>
<td>monocyte chemoattractant protein</td>
</tr>
<tr>
<td>MDA</td>
<td>malondialdehyde</td>
</tr>
<tr>
<td>MF</td>
<td>myofibroblast</td>
</tr>
<tr>
<td>MIP</td>
<td>macrophage inflammatory protein</td>
</tr>
<tr>
<td>NAC</td>
<td>N-acetyl cysteine</td>
</tr>
<tr>
<td>NADPH</td>
<td>nicotinamide adenine dinucleotide phosphate (reduced)</td>
</tr>
<tr>
<td>NAFLD</td>
<td>non-alcoholic fatty liver disease</td>
</tr>
<tr>
<td>NF-kB</td>
<td>nuclear factor kappa B</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer cell</td>
</tr>
<tr>
<td>Nrf2</td>
<td>nuclear erythroid factor-2</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales, an Australian State</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>OS</td>
<td>oxidative stress</td>
</tr>
<tr>
<td>P</td>
<td>placebo</td>
</tr>
<tr>
<td>P</td>
<td>probability value</td>
</tr>
<tr>
<td>P53</td>
<td>tumour protein 53</td>
</tr>
<tr>
<td>PCD</td>
<td>programmed cell death</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet-derived growth factor</td>
</tr>
<tr>
<td>PNAL</td>
<td>persistently normal ALT level</td>
</tr>
<tr>
<td>PPARγ</td>
<td>peroxisome proliferator-activated receptor gamma</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>RDBPCT</td>
<td>randomised, double-blind, placebo-controlled trial</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNS</td>
<td>reactive nitrogen species</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RVR</td>
<td>rapid virological response</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>S</td>
<td>silymarin</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>SOX</td>
<td>silymarin and antioxidant</td>
</tr>
<tr>
<td>STAT</td>
<td>signal transducer and activator of transcription</td>
</tr>
<tr>
<td>SVR</td>
<td>sustained virological response</td>
</tr>
<tr>
<td>TLC</td>
<td>thin-layer chromatography</td>
</tr>
<tr>
<td>TLRs</td>
<td>toll-like receptors</td>
</tr>
<tr>
<td>TM</td>
<td>traditional medicine</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor beta</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumour necrosis factor alpha</td>
</tr>
<tr>
<td>Treg</td>
<td>T regulatory cell</td>
</tr>
<tr>
<td>TRX, Trx</td>
<td>Thioredoxin</td>
</tr>
<tr>
<td>UV/VIS</td>
<td>ultra-violet and visible spectroscopy</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cell</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
GLOSSARY

Antioxidant is a substance that markedly slows or prevents oxidation of a substrate, when the substance is in low concentrations compared to that substrate.¹

Complementary medicine is an approach to health-care delivery that incorporates disease diagnosis, treatment and/or prevention and adds to conventional medicine by satisfying unmet demand or by broadening orthodox medicine’s theoretical structures.²

Compensated hepatitis C is an early phase of end-stage liver disease characterised by asymptomatic cirrhosis.³ It is reflected in a low level of complications from cirrhosis (e.g., jaundice, ascites, coagulopathy, and encephalopathy) as is characterised by a Child-Pugh Score of less than 7.

 Decompensated hepatitis C is the advanced phase of end-stage liver disease characterised by portal hypertension and or liver dysfunction³ (jaundice, ascites, or hepatic encephalopathy).⁴ The Child-Pugh Score is greater than 7.

Free radicals are molecules with an outer (valence) shell that contains an unpaired electron.⁵

International Nonproprietary Names (INN) help to identify pharmaceuticals or their active ingredients. Each INN provides a unique name that is public property and recognisable globally. A nonproprietary name is otherwise known as a generic name.⁶

Karyorrhexis is the fragmentation of the nucleus.⁷,⁸

Oxidative damage refers to the biomolecular harm when a reactive species attacks during oxidative stress.⁹

Oxidative stress (OS) is an imbalance between oxidants (reactive species production⁹, radical generating activity¹⁰) and antioxidants (antioxidant defence,⁹ radical scavenging activity¹⁰) in favour of the oxidants, potentially leading to (tissue) damage.⁵

Powdered extract (P.E.) refers to a dried extract. Fresh or dried plant material may be extracted in water, methanol, ethanol or other solvents to produce a liquid extract. This extract is then typically spray-dried to produce a dry or powdered extract. The powdered extract ratio is required for calculating the corresponding crude drug (plant) amounts e.g. P.E. 5:1 indicates that 5 kg of dried plant material was used to produce 1 kg of dried extract. The powdered extract ratio is synonymous with the drug-to-extract ratio.¹¹
Reactive oxygen species (ROS) is a collective term for oxygen radicals, such as superoxide anion (O\textsubscript{2}-), hydroxyl radical (OH), hydroperoxyl (HO\textsubscript{2}), peroxyl (RO\textsubscript{2}), alkoxyl (RO) and carbon dioxide (CO\textsubscript{2}). It also includes some non radicals which are oxidising agents and/or are easily converted into radicals, such as hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), ozone (O\textsubscript{3}), singlet oxygen (O\textsubscript{2}^1), organic peroxides (ROOH), and peroxynitrite (ONOO).9

Reactive nitrogen species (RNS) collectively refers to radicals of nitric oxide (NO) and nitrogen dioxide (NO\textsubscript{2}). It also includes some non radicals such as nitrous acid (HNO\textsubscript{2}), dinitrogen tetroxide (N\textsubscript{2}O\textsubscript{4}) and peroxynitrite (ONOO).9

Redox status refers to the ratio of reduced (GSH) glutathione to oxidised (GSSG) glutathione.12

Social determinants of health are conditions (including health systems) influenced by the distribution of resources, money and power locally, nationally and globally. These, in turn, are influenced by policy decisions. Social determinants of health are the main causes of health inequities within and between countries.13

Standardisation means uniformity of all required manufacturing steps, from the crude drug to the final extract, in order to achieve a defined product standard (specification). Herbal extracts are typically standardised to a particular marker compound which may in some cases also be considered the active compound.11

Traditional medicine comprises all knowledge, skills and practices which derive from indigenous ideas, beliefs and experiences of different cultures in order to maintain health, and to prevent, diagnose, treat, or improve physical and mental illnesses.14
LIST OF APPENDICES

Appendix A Award, research publications and presentations
Appendix B Patient information sheet and informed consent
Appendix C Advertising material
Appendix D Complementary medicines exclusions
Appendix E Alcohol, Drugs, Diet and Symptoms Questionnaires
Appendix F Conducting a Complementary Medicine trial, a checklist
LIST OF FIGURES

Frontispiece: *Silybum marianum* ... i

Figure 1.1: Diagramatic representation of pathogenesis of HCV relevant to this thesis. ... 1

2.1: Hepatitis C virus genotypes – world view 6

2.2: Biological effects of reactive oxygen species (ROS)/reactive nitrogen species (RNS) in hepatitis C 27

2.3: Sources of reactive species during HCV infection and possible combined effects of alcohol .. 30

2.4: The glutathione redox cycle ... 33

2.5: Model of activation of Nrf2-mediated ARE pathway by phytochemicals. 34

2.6: Flow chart showing the events leading to antioxidant mobilisation in response to oxidative stress ... 37

2.7: The antioxidant network .. 69

4.1: Hep573 Study participant flowchart .. 134

4.2: Percentage change in ALT from baseline at Week 24 and corresponding P-value. .. 141

4.3: Percentage change in
F₂-isoprostanes from baseline at Week 24 and corresponding P-value. .. 142

4.4: Percentage change in HCV RNA from baseline at Week 24 and corresponding P-value. .. 143

4.5: Percentage change in FibroTest from baseline to Week 24 and corresponding P-value. .. 144

4.6: Scatterplot of the within participant change in ALT versus the within participant change in
F₂-isoprostanes from Week 0 at Week 24. ... 145

4.7: Scatterplot of the within participant change in FibroTest versus the within participant change in
F₂-isoprostanes from Week 0 at Week 24. ... 146

4.8: Percentage change in HCV RNA in the follow-up (Weeks 24-48 inclusive) and corresponding P-value. .. 147

4.9: Comparisons of the total Hep573 Study population mean scores in SF-36 scales at Weeks 0, 24 and 48 against the Australian population and the one illness population .. 155

4.10: Change in the frequency of neuropsychiatric symptom clusters at Week 0-24 by treatment group with 95% confidence interval. 163

4.11: Change in the frequency of neurological symptom clusters from Weeks 0-24 by treatment group with 95% confidence interval (CI). 164

4.12: Change in neurological symptom clusters from Weeks 24-48 by treatment group with 95% confidence interval (CI). .. 165

4.13: Change in the frequency of neurological symptom clusters from Weeks 24-48 by treatment group with 95% confidence interval (CI). 166

4.14: Change in neurological symptoms clusters severity from Weeks 24-48 by treatment group with 95% confidence interval (CI). 167

4.15: Change in general symptoms clusters from Weeks 24-48 by treatment group with 95% confidence interval (CI). .. 169
4.16: Change in the frequency of general symptom clusters from Weeks 24-48 by treatment group with 95% confidence interval (CI). ..170
4.17: Change in general symptoms clusters severity from Weeks 24-48 by treatment group with 95% confidence interval (CI). ..171
LIST OF TABLES

Table 2.1: The side effect profile of the standard of care treatment plus the two most promising protease inhibitors .. 11

2.2: Nonmodifiable factors in progression to hepatic fibrosis ... 25

2.3: Modifiable factors in progression to hepatic fibrosis ... 26

2.4: PNAL and fibrosis staging represented as percentages .. 53

2.5: Elevated ALT and fibrosis staging represented as percentages .. 53

2.6: Hep573 trial interventions, evidence pre- and post-2003 .. 78

2.7: Evidence of mechanisms of action of Hep573 interventions pre-2003 .. 81

2.8: Evidence of mechanisms of action of Hep573 interventions post-2003 .. 87

3.1: Full List of Hep573 silymarin and antioxidant (SOX) trial interventions 111

3.2: Titration of the Hep573 Study dose over first Week of administration .. 112

3.3: Hep573 timeline and events schedule .. 113

3.4: Schedule for the Hep573 Study outcome measures ... 122

3.5: Caffeine content of beverages from NUTTAB 2010 database ... 130

4.1: Initial characteristics by treatment group (median and interquartile ranges) 135

4.2: Cross tabulation of treatment compliance >80% ... 138

4.3: ALT normalisation from baseline at Week 24 (intention-to-treat analysis) 138

4.4: ALT normalisation from baseline at Week 24 in the SOX Group ... 139

4.5: ALT normalisation from baseline at Week 24 per-protocol analysis ... 139

4.6: Normalisation rate with revised ALT range (≤ 40UL for male and ≤30 for female) from baseline at Week 24 (intention-to-treat analysis) ... 140

4.7: Normalisation rate with revised ALT range (≤ 40UL for male and ≤30 for female) from baseline at Week 24 (per protocol analysis) ... 140

4.8: Percentage change from baseline in ALT, \(F_2 \) isoprostanes, HCV RNA, FibroTest at Week 24 together with 95% Confidence interval (CI), \(P \)-value and overall test of homogeneity ... 140

4.9: Percentage change from baseline in LFTs at Week 24 together with 95% confidence interval (CI), \(P \)-value and overall test of homogeneity .. 144

4.10: Percentage change in ALT, HCV RNA and FibroTest from Week 24 at Week 48 together with 95% confidence interval (CI), \(P \)-value and overall test of homogeneity. ... 147

4.11: Percentage change in LFTs from Week 24 to Week 48 together with 95% confidence interval (CI), \(P \)-value and overall test of homogeneity ... 148

4.12: Percentage change in ALT, HCV RNA and FibroTest from baseline at Week 48 together with 95% confidence interval (CI), \(P \)-value and overall test of homogeneity. ... 149

4.13: Percentage change in LFTs from baseline at Week 48 together with 95% confidence interval (CI), \(P \)-value and overall test of homogeneity ... 149

4.14: Absolute change from baseline at Week 24 in \(HQLQ^{TM} v1 \), together with 95% confidence interval (CI), associated \(P \)-value and overall test of homogeneity ... 151

4.15: Absolute change from Week 24 at Week 48 in \(HQLQ^{TM} v1 \), together with 95% confidence interval (CI), associated \(P \)-value and overall test of homogeneity ... 152
4.16: Absolute change from baseline at Week 48 in HQLQ™v1 together with 95% confidence interval (CI), associated P-value and overall test of homogeneity ... 153
4.17: Comparisons of the mean scores plus standard error (SE) of SF-36 scales in Australian, NSW and one illness and Hep573 Study populations. 154
4.18: Comparative differences in designated study populations compared to the Australian ABS NHS population data. .. 155
4.19: Absolute change in the hepatitis-specific items in HQLQ™v1, from baseline at Week 24 together with 95% confidence intervals (CI), associated P-value and overall test of homogeneity. ... 156
4.20: Absolute change in the hepatitis-specific items in HQLQ™v1 from Week 24 at Week 48 together with 95% confidence intervals (CI), associated P-value and overall test of homogeneity. ... 157
4.21: Absolute change in the hepatitis-specific items in HQLQ™v1 from baseline at Week 48 together with 95% confidence intervals (CI), associated P-value and overall test of homogeneity. ... 158
4.22: Hep573 Cohort Symptom Prevalence at Baseline .. 158
4.23: Hep573 Symptom Prevalence and Gender Comparison at Baseline and P-value of homogeneity. ... 159
4.24: Hep573 symptoms per participant at baseline. .. 161
4.25: P-value for homogeneity of the within participant change from Weeks 0-24, Weeks 24-48 and from Weeks 0-48 by treatment group (obtained from LMEs) .. 162
4.26: Pairwise comparisons between treatment groups of the change in the frequency of neuropsychiatric symptom clusters from Weeks 0-24. 163
4.27: Pairwise comparisons between treatment groups of the change in frequency of neurological symptom clusters from Weeks 0-24............................. 164
4.28: Pairwise comparisons between treatment groups and neurological symptom clusters at Weeks 24-48... 168
4.29: Pairwise comparisons between treatment groups of the change in general symptom clusters at Weeks 24-48... 171
4.30: Alcohol and drug intake at baseline with the associated P-value 173
4.31: Daily alcohol intake (grams) per treatment group at baseline with median and interquartile ranges... 173
4.32: Daily alcohol intake (grams) per treatment group at Week 24 with median and interquartile ranges... 173
4.33: Daily alcohol intake (grams) per treatment group at Week 48 with median and interquartile ranges... 174
4.34: Change in BMI at Week 24 compared to baseline together with 95% Confidence Interval (CI), interquartile ranges and P-value................................. 174
4.35: Percentage of Hep573 Study population consuming specified food groups, any ill effect associated with its consumption across the three Study treatment groups at Weeks 0, 24 and 48. ... 175
4.36: Change in severity (how sick) over time across the treatment groups with corresponding P-value of homogeneity .. 176
4.37: Summary statistics for caffeine intake and within patient changes in intake over time (mean and standard deviation) ... 177
4.38: One-way ANOVA to test for difference in caffeine intake changes by treatment group ... 177
4.39: Occurrence of adverse events by treatment group .. 178
5.1: Genotype distribution comparison between Australian and Hep573 data 186
PREFACE

Chapter 1 Introduction: outlines the scientific aims of the Study.

Chapter 2 Literature Review: contains an overview of the hepatitis C virus (HCV) infection; epidemiology, virology, natural history, causes of liver injury including viral, immune, oxidative stress (OS) and the pathobiology of the disease. It also examines the clinical implications of chronic HCV infection and the current management strategies for the chronic hepatitis C (CHC) patients within naturopathic and allopathic paradigms.

Chapter 3 Methodology: outlines the Study design, procedures, quality control, outcome measures and statistical analyses.

Chapter 4 Results: reports on the results achieved in the Hep573 Study.

Chapter 5 Discussion: presents the findings, strengths, limitations and implications of the Study and outlines future research directions.

Chapter 6 Conclusion: offers some concluding remarks.

The Appendices: include all approved, supporting documentation related to the conduct of the Study.

Throughout this dissertation, the research undertaken will be referred to as the ‘Hep573 Study’ or the ‘Study’.
ABSTRACT

Oxidative stress (OS) is a key mechanism by which liver injury occurs in chronic hepatitis C (CHC) virus infection. For this Study, it was hypothesised the use of antioxidant compounds would reduce OS, hepatic necroinflammation and hepatic fibrosis in CHC patients. To test this hypothesis, a randomised, double-blind, placebo-controlled clinical trial (termed the ‘Hep573 Study’) was conducted in three Australian teaching hospitals in New South Wales.

One hundred and eighteen participants were recruited through the liver outpatient clinics at the hospitals from July, 2003 to March, 2006. They were randomised to treatment in blocks of six to one of three groups: placebo; silymarin (720 mg silybin/day); and silymarin with antioxidants (720 mg silybin plus 13 other ingredients).

Study duration was 48 weeks: 24 weeks on active treatment or placebo, and 24 weeks follow-up post treatment.

The primary outcome measure was the proportion of patients with alanine aminotransferase (ALT) normalisation at Week 24 (Fisher’s exact test). Secondary outcome measures were the percentage change from baseline to Week 24 in F₂-isoprostanes, and to Week 24 and Week 48 in ALT, HCV viral load (HCV RNA) and FibroTest (Linear Mixed Effects). Results were analysed on an intention-to-treat basis.

In patients with compensated CHC, the use of silymarin and antioxidant compounds achieved a higher rate of ALT normalisation than placebo (P=0.02) or silymarin (P=0.003) at Week 24. This result could not be attributed to alcohol, diet or caffeine, as intake across the groups did not change throughout the Study. In addition, there was a significant improvement in the overall mental-health score (Mental Component Summary), QualityMetric Hepatitis Quality of Life Questionnaire™ (HQLQ) in the silymarin and antioxidant (SOX) group (P=0.002).

This novel randomised, double-blind, placebo-controlled trial of oral silymarin and oral antioxidants has shown a reduction in hepatic necroinflammation and an improvement in overall mental-health status in a specific CHC population.