Translational Control of Mouse Folliculogenesis and Oocyte Development

Kara Megan Gunter

BSc (Biotechnology) (Hons) Class I

Doctor of Philosophy
December, 2012
Declaration

I hereby certify that the work embodied in this thesis is the result of original research and has been submitted for a higher degree to any other University or Institution.

Signed ………………………………………

Kara M. Gunter

Statement of Originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Signed……………………………………

Kara M. Gunter
Acknowledgements

I would like to acknowledge my supervisors, Prof. Eileen McLaughlin and my Co-Supervisor, Dr. Gary Hime for their support throughout my PhD candidature. In particular Eileen, for always being so readily available, enthusiastic about my project, for sharing and instilling your vast amount of knowledge. I have been very lucky to have such supportive and knowledgeable supervisors to guide me over the past 4 years.

To all the members of the Aitken laboratory, past and present: you have all been such helpful and terrific people to work with and have made my time in the laboratory very memorable. In particular to Jessie Sutherland, Barbara Fraser, Victoria Pye, Simone Stanger, Mark Bigland and Dr. Alexander Sobinoff for always being there to share your knowledge, help and wipe away the tears. I would also like to thanks Laureate Professor John Aitken for giving me the opportunity to complete my research training within the Aitken laboratory.

Thanks also to the Australian Genome Research Facility and the Australian Proteomics Analysis Facility for conducting the microarray and LC MS/MS analysis (respectively) included in this thesis.

Last but in no ways least, I would like to thank my family and friends for all their support and encouragement over the past 4 years. To Patrick, thank you for being my rock over the final stages of my thesis write up and helping me see the brighter side of life through all the stress. Thank you to my parents, Murray and Janine, for their support, encouragement and their belief in my abilities. To my sister, Christie, and my brother, Paul, thank you for keeping me grounded and reminding me there is more to life than research.

-
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration and Statement of Originality</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xviii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xix</td>
</tr>
<tr>
<td>Abstract</td>
<td>xxi</td>
</tr>
</tbody>
</table>

Chapter 1. Literature Review

1.1 Introduction

1.2 Folliculogenesis and Oocyte Development

1.2.1 Gonadotrophins: role in follicular development

1.2.2 Final stages of preovulatory oocyte development and re-entry into meiosis

1.2.3 Post ovulatory oocyte development

1.3 Central Dogma of Molecular Biology

1.3.1 Transcription

1.3.2 mRNA processing

1.3.3 Translation

1.3.3.1 Initiation

1.3.3.1.1 Formation of the translation initiation complex

1.3.3.2 Elongation

1.3.3.3 Termination

1.3.3.4 Ribosome Recycling

1.4 Importance of Translational Control in Oocyte and Embryonic Development

1.4.1 Parallels from another model system – *Drosophila*

1.5 The Musashi family of RNA-binding proteins

1.6 Musashi-1 in Stem Cell Systems

1.6.1 Intestinal Stem Cells

Kara Gunter
PhD Thesis
1.6.2 Neural Stem Cells 25
1.6.3 Haematopoietic Stem cells 27
1.6.4 Potential Mechanism of Translation Repression 28

1.7 Role of Musashi-1 in the Germline and Reproductive Systems 29
1.7.1 Drosophila Msi and Real Msi 29
1.7.2 Xenopus Msi (xMsi-1 and xMsi-2) 30
1.7.3 Rat and Mouse Msi-1 and Msi-2 31

1.8 Study Aims and Hypothesis 31
1.8.1 Experimental aims 32

Chapter 2. Materials and Methods 34
2.1 Reagents and Chemicals 34
2.2 Animal Ethics 34
2.3 MII Oocyte Isolation and Cell Culture 35
2.4 Molecular Techniques 35
2.4.1 Total RNA Extraction from Neonatal and Adult mouse ovaries 35
2.4.2 DNase treatment of total ovary RNA 37
2.4.3 Determination of Nucleic Acid Concentration 37
2.4.4 cDNA synthesis 37
2.4.5 Primer Design and Sequences 38
2.4.6 Standard PCR Reactions 39
2.4.7 Agarose gel DNA electrophoresis 39
2.4.8 Real time (quantitative) PCR analysis (qPCR) 39
2.4.9 Native Protein-RNA Immunoprecipitation Assay for mRNA target identification 42
2.4.10 First and Second Strand Synthesis of isolated mRNA targets 43
2.4.11 Ligation of RT products in plasmids for target identification 45
2.4.12 Transformation of competent bacteria with pGEM-T Easy vector containing cDNA inserts of Musashi protein mRNA targets. 45
2.4.13 Colony PCR 46
2.4.14 Preparation of bacterial culture for DNA sequencing 46
2.4.15 Small Scale Plasmid Purification for target identification via DNA sequencing (mini-prep) 47
2.4.16 DNA sequencing
2.4.17 GST-Msi-1 recombinant protein pulldown for Identification of target mRNA transcripts
2.4.18 Neonatal transgenic ovary isolation and Microarray Analysis
2.4.19 Ligation-mediated Poly(A) tail length assay (LM-PAT assay)

2.5 Protein Methods
2.5.1 RIPA protein extraction
2.5.2 Protein quantitation
2.5.3 SDS gel electrophoresis and Western Blot (Immunoblot) Transfer
2.5.4 Western Blot (Immunoblot) probing and development
2.5.5 Protein Localisation
2.5.5.1 Microscopy
2.5.5.2 Immunohistochemistry
2.5.5.3 Immunocytochemistry
2.5.5.4 Haemotoxylin and Eosin Staining
2.5.6 Protein-Protein Immunoprecipitation

2.6 Histological Analysis- Follicle counts
2.7 Statistical Analysis

Chapter 3. Characterisation of Musashi-1 in Mouse Folliculogenesis
3.1 Introduction
3.1.1. Musashi-1 as a translational control protein
3.1.2 Musashi-1 in reproduction
3.1.3 Experimental Rationale

3.2 Results
3.2.1 Msi-1 is expressed throughout folliculogenesis
3.2.2 Transgenic Msi-1 mice have confirmed Msi-1 overexpression and aberrant regulation of folliculogenesis
3.2.3 Msi-1 mRNA target identification through GST-Msi-1 recombinant protein pulldown and protein-RNA immunoprecipitation
3.2.4 Msi-1 targets c-mos in the mouse ovary resulting in translational activation and MAPK pathway activation
3.2.5 Msi-1 targets ROBO3 for translational repression
3.2.6 CCNG2 is a target of Msi-1 translational repression within the mouse ovary

3.2.7 msi-2 is targeted for translational repression by Msi-1 in the mouse ovary

3.2.8 Msi-1 interacts with several proteins to influence the translation of different transcripts

3.2.9 Msi-1 affects the translation of c-mos and msi-2 by influencing Poly(A) tail length

3.3 Discussion

3.3.1 Msi-1 is expressed within the mouse ovary and is present throughout folliculogenesis

3.3.2 Msi-1 overexpression in the mouse ovary results in aberrant folliculogenesis and a significant reduction in fertility

3.3.3 Msi-1 targets c-Mos, triggering activation of the MAPK pathway leading to meiotic resumption

3.3.4 Robo3, ccng2 and msi-2 are targets for Msi-1 translational repression

3.3.5 Msi-1 works in conjunction with a range of RNA-binding proteins and translation factors to influence mRNA translatability

3.3.6 Msi-1 influence poly(A) tail length of the msi-2 transcript but not the transcript of c-mos

Chapter 4. Role of Musashi-2 in Mouse Folliculogenesis

4.1 Introduction

4.1.1 Msi-2 as a translational control protein

4.1.2 Msi-2 in reproduction

4.1.3 Experimental Rationale

4.2 Results

4.2.1 Characterisation of Msi-2 in the mouse ovary

4.2.2 Msi-2 mRNA target identification

4.2.3 Msi-2 targets cdkn1c and m-numb transcripts within the mouse ovary

4.2.4 Determining a mechanism of action for Msi-2 in the mouse ovary

4.3 Discussion

4.3.1 Msi-2 is expressed throughout the process of folliculogenesis within the
nucleus of oocytes and granulosa cells

4.3.2 Msi-2 overexpression within the mouse oocyte results in the attenuation of primordial follicle activation

4.3.3 Msi-2 targets cdkn1c and m-numb resulting in the inhibition of primordial follicle activation

4.3.4 Msi-2 is a protein partner involved in nuclear processes within the mouse ovary

4.3.5 Concluding remarks

Chapter 5. mRNA target identification via differential gene expression analysis

5.1 Introduction

5.1.1 Differential gene expression via microarray

5.1.2 Experimental Rationale

5.2 Results

5.2.1 tgMsi-1 overexpression differential gene expression analysis

5.2.2 tgMsi-2 overexpression differential gene expression analysis

5.3 Discussion

5.3.1 Msi-1 overexpression microarray analysis

5.3.1.1 General trends

5.3.1.2 Genes hypothesised to play a significant role in mouse oocyte development and early embryonic development

5.3.1.2.1 Cell cycle and Cancer-related processes

5.3.1.2.2 Cytoskeletal and microtubule proteins

5.3.1.2.3 Signal transduction proteins

5.3.1.2.4 Transcription factors

5.3.2 Msi-2 overexpression microarray analysis

5.3.2.1 General trends

5.3.2.2 Genes hypothesised to play a significant role in mouse oocyte development and early embryonic development

5.3.2.2.1 Glucose and Carbohydrate metabolism

5.3.2.2.2 Transcription factors

5.3.2.2.3 Signal transduction genes
5.3.2.2.4 Chromatin remodelling genes 260

5.3.3 Conclusions and Future Directions 261

Chapter 6 Final Discussion and Future Directions 262

6.1 Impact of Msi-1 function on primordial follicle activation and follicular development 263

6.2 Impact of Msi-2 function on repression of the primordial follicle pool and follicular development 268

6.3 Potential role for Musashi protein family during early embryonic development 270

6.4 Concluding remarks and Future Directions 272

References 277

Appendices

Appendix A 301
Appendix B 305
Appendix C 400
Appendix D 408
List of Figures

Chapter 1 Literature Review

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Primordial Germ Cell (PGC) migration to the gonadal ridges.</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Diagrammatic Representation of Folliculogenesis</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Diagrammatic representation of the Hypothalamus-Pituitary-Gonad axis</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic representation of the processes involved in the Central Dogma of Molecular Biology, as suggested by Francis Crick in 1958 and published in diagrammatic form in 1970</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>The Eukaryotic Transcription Cycle</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Formation of the Eukaryotic translation initiation complex</td>
<td>15</td>
</tr>
<tr>
<td>1.7</td>
<td>Structure of the eukaryotic 80S ribosome.</td>
<td>16</td>
</tr>
<tr>
<td>1.8</td>
<td>Schematic diagram illustrating the crucial role of translational activation and repression necessary for correct embryonic patterning in the Drosophila embryo.</td>
<td>20</td>
</tr>
<tr>
<td>1.9</td>
<td>Schematic diagram illustrating the structure of Drosophila Msi (dMsi), Real Msi (ReMsi), Xenopus Msi-1 (xMsi-1), Xenopus Msi-2 (xMsi-2), and Mouse Msi-1 and Msi-2.</td>
<td>22</td>
</tr>
<tr>
<td>1.10</td>
<td>Structure of the intestinal epithelium, illustrating crypt structure and the location of the intestinal stem cells and progenitors</td>
<td>24</td>
</tr>
<tr>
<td>1.11</td>
<td>Location and structural organisation of adult neural stem cells in the mammalian brain.</td>
<td>26</td>
</tr>
<tr>
<td>1.12</td>
<td>Generation of blood cell lineages from haematopoietic stem cells</td>
<td>28</td>
</tr>
<tr>
<td>1.13</td>
<td>Proposed working model of translational repression by Msi-1 in neural stem cells</td>
<td>29</td>
</tr>
</tbody>
</table>

Chapter 2. Materials and Methods

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diagrammatic representation of the phenol/chloroform/isoamyl alcohol precipitation procedure used for the extraction of RNA from cells and tissues</td>
<td>36</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic representation of Ligation-Mediated Poly(A) tail length (LM-PAT) assay</td>
<td>51</td>
</tr>
</tbody>
</table>
Chapter 3 Characterisation of Msi-1 in mouse folliculogenesis

3.1 msi-1 mRNA is expression fluctuates throughout folliculogenesis.
3.2 Expression of Msi-1 and its phosphorylated forms in mouse ovarian tissue
3.3 Mouse Musashi-1 (Msi-1) localises to cytoplasm of oocytes and granulosa cells
3.4 Mouse Msi-1 is expressed within the cytoplasm of MII oocytes post-ovulation
3.5 msi-1 mRNA is increased in the ovaries of tgMsi-1 overexpression mice
3.6 Msi-1 protein expression increased in the ovarian lysates of two out of three tgMsi-1 overexpression pairs examined
3.7 Expression of Mouse Msi-1 in transgenic Msi-1 overexpression mice
3.8 Msi-1 is expressed post-ovulation in MII oocytes isolated from WT and tgMsi-1 overexpression mice.
3.9 Msi-1 is involved in the activation and recruitment of primordial follicles into the growing follicle population of the mouse ovary
3.10 Transgenic Msi-1 overexpression mice produce significantly less MII oocytes through superovulation than their WT littermates
3.11 GST-Msi-1 mRNA pulldown resulted in the identification of 1,489 potential Msi-1 mRNA transcripts of various functions
3.12 Direct mRNA targets of Msi-1 as discovered via RNA Immunoprecipitation (RIP) using lysate from day 4 swiss ovaries
3.13 c-Mos gene expression is significantly reduced in the intact ovaries of juvenile adult tgMsi-1 overexpression mice
3.14 Msi-1 overexpression results in little to no change in c-Mos protein expression
3.15 mek mRNA expression is unaltered by Msi-1 overexpression in the mouse oocyte
3.16 MEK expression and localisation is unaltered by Msi-1 overexpression in the mouse oocyte
3.17 MEK protein activation is unchanged by Msi-1 overexpression in the mouse oocyte
3.18 erk2 mRNA expression is marginally reduced in tgMsi-1 ovaries
3.19 ERK activation was increased by Msi-1 overexpression in the mouse
3.20 ERK protein localisation was altered through activation, while expression was only mildly affected by Msi-1 overexpression in the mouse oocyte.

3.21 Cyclin B1 expression is mildly altered as a result of Msi-1 overexpression and c-Mos translation.

3.22 robo3/rig-1 mRNA is significantly increased in the ovaries of tgMsi-1 mice.

3.23 Robo3 protein expression is only slightly increased in the ovaries of tgMsi-1 mice.

3.24 Expression of ROBO3 appears reduced in ovaries of tgMsi-1 overexpression mice without altering localisation.

3.25 cyclin G2 (ccng2) mRNA expression is significantly increased in juvenile adult tgMsi-1 intact ovaries.

3.26 Expression of CCNG2 is reduced in the oocytes of tgMsi-1 overexpression mice.

3.27 msi-2 mRNA expression is significantly increased as a result of Msi-1 overexpression in the mouse oocyte.

3.28 Msi-2 protein expression is slightly increase tgMsi-1 ovarian lysate samples but expression is decreased in MII oocytes isolated from tgMsi-1 mice through superovulation.

3.29 Msi-2 protein expression in the mouse ovary appears undisturbed by tgMsi-1 overexpression.

3.30 Immunoprecipitation of Msi-1 resulted in the isolation of a vast array of interacting proteins.

3.31 Polyadenylation binding protein cytoplasmic 1 (PABPC1) is present within the Msi-1 IP sample as a potential interacting protein of Msi-1 in the mouse ovary.

3.32 Msi-1 and PABPC1 co-localise to the cytoplasm of granulosa cells within the mouse ovary.

3.33 ERH and Msi-1 are interacting proteins as confirmed by immunoblotting of ERH IP elution samples.

3.34 ERH localises to the cytoplasm of oocytes and granulosa cells in WT.
and tgMsi-1 overexpression ovaries

3.35 Msi-1 overexpression in the mouse ovary has no effect on c-mos mRNA poly(A) tail length

3.36 Poly(A) tail of the msi-2 mRNA transcript was altered by the Msi-1 overexpression

Chapter 4. Role of Msi-2 in mouse folliculogenesis

4.1 msi-2 mRNA expression is maintained throughout folliculogenesis

4.2 Msi-2 protein increases in expression throughout folliculogenesis.

4.3 Mouse Msi-2 expression is localised to the nucleus of oocytes and granulosa cells.

4.4 Msi-2 is expressed within the cytoplasm of MII oocytes

4.5 msi-2 mRNA expression is elevated in the ovaries of tgMsi-2 overexpression mice

4.6 Msi-2 expression is reduced in tgMsi-2 ovaries and MII oocytes when compared to their WT littermates

4.7 Msi-2 overexpression in the mouse oocyte results in increased nuclear staining of the protein in the oocyte but no change in protein localization

4.8 Msi-2 is localised to the cytoplasm of MII oocytes isolated from WT and tgMsi-2 mice

4.9 Ovaries of tgMsi-2 overexpression mice contain significantly more primordial germ cells compared to their WT littermates

4.10 Msi-2 overexpression in the mouse oocyte results in increased MII oocyte yield via superovulation

4.11 A) Msi-2 targets cdkn1c, numb and mtf2 mRNA transcripts, with a highly significant enrichment of these transcripts in the Msi-2 protein-RNA immunoprecipitation samples. B) Quantitative PCR analysis revealed mtf2 to be significantly increased in tgMsi-2 ovaries when compared to the WT.

4.12 cdkn1c mRNA abundance is significantly altered in Msi-2 overexpression ovaries.

4.13 Overexpression of Msi-2 in the mouse ovary results in decreased expression of CDKN1C in the oocytes and granulosa cells
4.14 Cdkn1c expression is reduced in MII oocytes isolated from tgMsi-2 mice when compared to their WT littermates

4.15 Expression of Cdkn1c appears to be only slightly reduced as a consequence of Msi-2 overexpression in the mouse ovary

4.16 Expression of numb mRNA fluctuates throughout the process of mouse folliculogenesis

4.17 Abundance of the transcript encoding m-numb is significantly increased as a consequence of Msi-2 overexpression in mouse ovary

4.18 m-Numb localises to the nucleus of oocyte as well as staining throughout the granulosa cells in the mouse ovary. m-Numb expression also appears reduced as a result of oocyte-specific Msi-2 overexpression

4.19 Numb protein expression is significantly increased in the MII oocytes of WT and tgMsi-2 overexpression mice

4.20 Msi-2 overexpression in mouse ovary results in an increase in Numb expression.

4.21 Msi-2 interacts was found to interact with a number of different proteins at a variety of sizes

4.22 Msi-2 was isolated through Msi-2 immunoprecipitation and is capable of interacting with SFPQ

4.23 Msi-2 and SFPQ colocalise to the nucleus of oocytes and granulosa cells within the mouse ovary

4.24 SFPQ localisation is unaffected by Msi-2 overexpression in the mouse oocyte

Chapter 5 mRNA target Identification via differential gene expression analysis

5.1 Msi-1 overexpression in the mouse ovary impacts a variety of canonical pathways necessary for ovary development.

5.2 Msi-1 overexpression in the mouse ovary influences gene expression of a number of molecules involved in a variety of cellular and tissue functions.

5.3 Msi-1 overexpression in the mouse ovary results in changes in signaling pathways associated with Nucleic Acid Metabolism, Small molecule biochemistry, and Cellular assembly and organisation.
5.4 Msi-1 overexpression in the mouse ovary leads to changes in gene expression of members of the infectious disease, cellular compromise and molecular transport pathways.

5.5 Msi-1 overexpression in the mouse ovary results in changes to members of the cell cycle, protein degradation and protein synthesis pathways at the mRNA level.

5.6 Msi-1 overexpression in the mouse ovary results in the altered mRNA expression of a number of molecules identified as being involved in cardiovascular system development and function, embryonic development and organ development.

5.7 Msi-1 overexpression within the mouse ovary results in the mRNA expression changes to molecules involved in cardiovascular system development and function, cellular development and connective tissue development and function.

5.8 Overexpression of Msi-1 within the ovaries of day 4 mice results in upregulation of a number of molecules within different signaling pathways known to be involved in ovarian development.

5.9 Msi-1 overexpression in the mouse ovary leads to the upregulation of genes involved in wide range of cellular process and tissue functions.

5.10 Genes upregulated as a result of Msi-1 overexpression are involved in pathways involving gene expression, lipid metabolism and small molecule biochemistry.

5.11 Genes upregulated as a result of overexpression of Msi-1 within the mouse ovary are involved in cellular processes such as cellular assembly and organisation, cellular function and maintenance, and antigen presentation.

5.12 Genes found to be upregulated in tgMsi-1 overexpression ovaries are involved in pathways regulating carbohydrate metabolism, energy production and small molecule biochemistry.

5.13 Msi-1 overexpression in the mouse ovary leads to the downregulation of genes involved in canonical pathways such as mitotic roles of polo-like kinase, calcium signaling and metabolism of nutrients and other chemical compounds.
5.14 Genes found to be downregulated as a consequence of Msi-1 overexpression in the mouse ovary are related to a number of different biological functions, including the cell cycle, cellular assembly and organisation, nucleic acid metabolism, reproductive system disease, and cancer.

5.15 Genes identified as downregulated in tgMsi-1 overexpression ovaries are involved in a number of cellular processes including cellular function and maintenance, cell death and cell cycle.

5.16 Downregulated genes identified in tgMsi-1 ovaries are involved in biological processes such as endocrine system disorders, gastrointestinal disease and genetic disorders.

5.17 Genes downregulated as a result of Msi-1 overexpression are involved in processes including cell cycle, organismal injury and abnormalities, and cancer.

5.18 Results of differential gene expression analysis via microarray of WT and tgMsi-1 overexpression mouse ovary samples were confirmed through quantitative PCR analysis.

5.19 Overexpression of Msi-2 in the mouse ovary results in changes in gene expression influencing a number of signaling pathways involved in mouse folliculogenesis and development.

5.20 Msi-2 overexpression in the mouse ovary influences a wide range of biological processes through altering the gene expression of molecules important to signaling pathways governing these processes.

5.21 Overexpression of Msi-2 in the mouse ovary leads to gene expression changes that influence biological pathways including those governing cell cycle, cellular assembly and organisation, and cellular function and maintenance.

5.22 Differentially expressed genes in the tgMsi-2 overexpression ovaries contribute to cellular and tissue related processes governing cellular morphology, cellular assembly and organisation, and nervous system development and function.

5.23 Genes with altered expression as a result of Msi-2 overexpression govern biological processes including embryonic development, tissue
morphology and cellular development.

5.24 Msi-2 overexpression in the mouse ovary results in the upregulation of genes involved in a variety of canonical pathways that influence ovarian function and oocyte development.

5.25 Top biological functions associated with differentially expressed genes detected during microarray analysis of transgenic Msi-2 overexpression ovaries.

5.26 Genes upregulated in tgMsi-2 ovaries are involved in biological networks involving cellular compromise, cell death and embryonic development.

5.27 Genes downregulated as a result of Msi-2 overexpression in the mouse ovary are members of several canonical pathways including Mismatch repair in eukaryotes and the PTEN pathway.

5.28 Genes identified as being downregulated in transgenic Msi-2 ovaries function in development and cellular function.

5.29 Msi-2 overexpression in the mouse ovary results in downregulation of genes involved in signaling pathways involved in cell-to-cell signaling and interaction, cellular assembly and organisation, and cellular function and maintenance.

5.30 Genes identified as being downregulated in tgMsi-2 overexpression ovaries contribute to signaling pathways known to regulated processes such as cell morphology, cellular assembly and organisation, and nervous system development and function.

5.31 Downregulated genes identified in tgMsi-2 overexpression ovaries were found to be members of signaling pathways governing auditory and vestibular system development and function, organ morphology and cellular development.

5.32 Results of differential gene expression analysis via microarray of WT and tgMsi-2 overexpression mouse ovary samples were confirmed through quantitative PCR analysis.
Chapter 6 Final Discussion

6.1 Msi-1 functions to translationally activate (+) or translationally repress (-) mRNA targets as a means of controlling mouse oocyte meiotic progression.

6.2 Msi-2 appears to functions to regulate all levels of gene expression within the mouse oocyte.
List of Tables

Chapter 2. Materials and Methods

2.1 Mouse qPCR primer list, sequence, annealing temperature and product size.
2.2 Concentrations of primary antibodies used for Immunoblotting of adult mouse ovary protein on western blot membranes.
2.3 Optimum concentrations for the primary antibodies used to localise the expression of proteins of interest in mouse ovary sections.
2.4 Concentrations and dilutions of primary antibodies used to localise protein expression with mouse MII oocytes.

Chapter 3. Characterisation of Msi-1 in Mouse Folliculogenesis

3.1 Potential mRNA targets of Msi-1 identified via GST-Msi-1 pulldown analysis coupled with Affymetrix microarray identification.
3.2 List of proteins of interest isolated via Msi-1 specific immunoprecipitation of day 4 swiss ovary and identified via LC-MS/MS analysis.

Chapter 4. Role of Msi-2 in Mouse Folliculogenesis

4.1 List of proteins of interest isolated via Msi-2 specific immunoprecipitation of day 4 swiss ovary and identified via LC-MS/MS analysis.

Chapter 5. mRNA target Identification via differential gene expression analysis

5.1 Genes identified as differentially expressed in the ovaries of tgMsi-1 overexpression mice compared with their WT littermates.
5.2 Genes identified as differentially expressed in the ovaries of tgMsi-2 overexpression mice compared with their WT littermates.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μl, μg, μm, μM</td>
<td>micro-litres, grams, moles or molar respectively</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>DAB</td>
<td>diaminobenzidine</td>
</tr>
<tr>
<td>dATP</td>
<td>deoxyadenosine triphosphate</td>
</tr>
<tr>
<td>dCTP</td>
<td>deoxycytidine triphosphate</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonate</td>
</tr>
<tr>
<td>dGTP</td>
<td>deoxyguanosine triphosphate</td>
</tr>
<tr>
<td>dH₂O</td>
<td>distilled water</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Minimum Essential Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>dTTP</td>
<td>deoxythymidine triphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>dUTP</td>
<td>deoxyuridine triphosphate</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia Coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetra acetic acid</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>g (in reference to weight)</td>
<td>grams</td>
</tr>
<tr>
<td>g (in reference to centrifugation)</td>
<td>gravity</td>
</tr>
<tr>
<td>hr</td>
<td>hours</td>
</tr>
<tr>
<td>H₂O</td>
<td>water</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>ITS-X</td>
<td>insulin/transferrin/selenium</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>LB</td>
<td>luria broth</td>
</tr>
<tr>
<td>Milli Q</td>
<td>ultra-pure water</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ml, mg, mM</td>
<td>milli-litres, grams and molar respectively</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>Msi-1</td>
<td>Musashi-1</td>
</tr>
<tr>
<td>Msi-2</td>
<td>Musashi-2</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>ng</td>
<td>nanograms</td>
</tr>
<tr>
<td>PAP</td>
<td>hydrophobic barrier pen</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PGC</td>
<td>primordial germ cell</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>RT (with reference to temperature)</td>
<td>room temperature</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin RNA</td>
</tr>
<tr>
<td>siRNA</td>
<td>short interfering RNA</td>
</tr>
<tr>
<td>TBS(T)</td>
<td>tris buffered saline (plus Tween-20)</td>
</tr>
<tr>
<td>Tween-20</td>
<td>polyoxyethylenesorbitan monolaurate</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>
Abstract

The production of healthy, euploid oocytes from a finite pool of primordial follicles is crucial to the reproductive success of the mammalian female. Central to the production of a healthy oocyte is correct expression of a number of proteins which govern processes such as cell cycle, chromosome segregation and cell differentiation. Control of the maternal mRNA pool during oocyte maturation is crucial for the correct temporal and spatial expression of protein necessary for these processes. Control of the mRNA pool is assisted through the action of sequence-specific RNA-binding proteins, including those of the Musashi (Msi) family, which has been widely described to be a family of translational repressor proteins in stem cells while studies in the mammalian germline have been limited.

Utilising both mRNA and protein expression analysis, both Msi-1 and Msi-2 were found to be expressed throughout mouse folliculogenesis, with Msi-1 primarily expressed with the cytoplasm of the mouse oocyte and granulosa cells, while Msi-2 is expressed within the nucleus of these cell types. Transgenic overexpression mice for both Msi homologs were utilised to determine the downstream mRNA targets of both homologs in the mouse ovary. Through the utilisation of Native protein-RNA immunoprecipitation techniques, coupled with mRNA and protein expression techniques such as qPCR and immunoblotting performed on WT and tg ovaries, Msi-1 was found to act as a translational control protein capable of both translational activating the c-mos transcript and translationally repressing the ccng2, robo3 and msi-2 transcript in the ovaries of 5 week old mice. Functional analysis performed through use of a Ligation-mediated poly(A) tail length (LM-PAT) assay, revealed the differences in these two functions could result from the ability of Msi-1 and/or its interacting proteins to manipulate the length of the poly(A) tail of target transcripts, which governs mRNA translation efficiency.

While Msi-2 was found to act as a translational repressor of cdkn1c in the mouse ovary, a novel function of Msi-2 as a transcriptional control and/or splicing factor of m-numb was uncovered by this study, with Msi-2 found to complex with the transcriptional repressor and splicing proteins SFPQ and Nono.

Global transcriptome analysis of ovaries excised from WT, tgMsi-1 and tgMsi-2 mice revealed the RNA-binding proteins to primarily influence the expression of genes governing processes such as cell cycle, chromosome segregation, cellular differentiation,
organism development and cell survival, with all of these processes being tightly controlled in order to produce a healthy oocyte and subsequent zygote. Therefore, the studies outlined in this thesis represent the first in depth expression and functional analysis of the RNA-binding proteins Msi-1 and Msi-2, with results highlighting the complex network of transcriptional and translational control that exists within the mouse ovary.