DNA REPAIR AND THE FANCONI ANEMIA PATHWAY:
INSIGHTS INTO FEMALE MEIOSIS AND MITOSIS

WAI SHAN YUEN
BSc (Hons I)

PH.D THESIS
Declaration

This thesis contains no material which has been accepted for the award of any other Degree or Diploma in any University or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made to the text. I give consent to the final version of my thesis being made available worldwide when deposited into the University’s Digital Repository, subject to the provision of the Copyright Act 1968.

I hereby certify that the work embodies in this thesis contains a published paper of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication (Appendix I)

Wai Shan Yuen

26th October 2012
Acknowledgements

I would like to sincerely thank my supervisors, Keith and Julie, for giving me this opportunity. I am grateful and honoured for their guidance and wisdom that they have shown me throughout this project.

I would also like to extend my thanks to all the lab members including Evan, Janet, Jess, Kyra, Nicole, Phoebe, Simon, Sophia, Suzanne and Yan. I thank them for their help and their company as my experience was made enjoyable by them.

I am eternally grateful to my mum and my brother, who have shown me so much love, patience, and understanding throughout these years. For without them, I am nothing.

To Kaini, my best bud, it’s always better when we’re together. I miss the fun and crazy times with you. Thanks for being there for me, always. To Korey and all my friends, here and back home, thanks for your love and your neverending support. To Timbre, Zee and Bear for all of your love and company.

Lastly I would like to thank Michelle, who has been with me 24/7 through the bad times and the good. You are a pillar of strength and have pulled me through the dark and trying moments. Thank you for the laughs, the smiles and the joy. The memories would last a lifetime.
Abstract

There are numerous intrinsic and extrinsic factors that cause DNA damage. Without proper DNA repair, such damage would cause genomic instability, premature aging and cancer. The Fanconi Anemia (FA) pathway is important for the repair and resolution of interstrand crosslinks. The key events of this pathway are the ubiquitination of a FA protein, FANCD2, and its localisation onto sites of DNA damage as nuclear foci. Of interest, Gametogenetin (GGN) has been found previously to interact directly with the FA protein responsible for this ubiquitination. In this thesis, using siRNA knockdown, I examined first the role of GGN1 in HeLa cell growth and survival. The phenotypic similarities of GGN1 depleted cells and FA-deficient fibroblasts led me to investigate the role of GGN1 in the FA pathway. It was found that GGN1 was important for the localisation but not the ubiquitination of FANCD2. In addition, an automated method for FANCD2 foci quantification and analysis was developed.

In comparison to mitotic cells, oocytes spend the majority of their life arrested in prophase I and this would make them vulnerable to DNA damage. This could in turn lead to female infertility and embryo abnormalities. However, there is little known about the DNA repair capacity of oocytes to respond to such damages. It was discovered, in this thesis, that oocytes have a high tolerance for interstrand crosslinks (ICLs) as compared to double stranded breaks. In combination with the expression of FA transcripts and proteins, this suggested that oocytes might have an active ICL repair. It was determined in this thesis that although oocytes had the ability to detect DNA damage, the FA pathway was found to be inactive during meiosis and only initiated upon embryo formation. The data presented in this thesis also suggest that FANCD2 might have a separate role in meiosis.
Table of Contents

Declaration .. ii

Acknowledgements ... iii

Abstract .. iv

Table of Contents .. v

List of Figures ... x

List of Tables .. xii

List of Abbreviations .. xiii

1. Introduction .. 1
 1.1. DNA Damage .. 2
 1.1.1. Types of DNA Damage .. 2
 1.1.2. Intrinsic DNA Damage ... 4
 1.1.3. Extrinsic DNA Damage ... 5
 1.2. DNA Repair and Signalling in Somatic Cells .. 9
 1.2.1. DSB and ssDNA Repair: Initial Signalling .. 9
 1.2.2. Fanconi Anemia Pathway .. 13
 1.2.3. GGN and the FA pathway ... 20
 1.3. DNA Repair in Oocytes .. 21
 1.3.1. Overview of Folliculogenesis .. 21
 1.3.2. Meiosis .. 22
 1.3.3. DNA Repair in Mature Oocytes ... 25
 1.4. FA Pathway in Mitosis and Meiosis ... 27
 1.4.1. FA Pathway in Mitosis ... 27
 1.4.2. FA Pathway in Meiosis ... 28
 1.5. Aims .. 30

2. Materials and Methods ... 31
 2.1. HeLa Cell Culture ... 31
 2.1.1. Passaging and Cell Maintenance ... 31
 2.1.2. Cell Cycle Synchronisation ... 32
2.1.3. SiRNA Transfection .. 33
2.1.4. Viability Assay .. 34
2.2. Mouse Handling and Dissection .. 36
 2.2.1. Ethics Statement ... 36
 2.2.2. Breeding .. 36
 2.2.3. Hormonal Priming .. 36
 2.2.4. Dissection and Ovary Collection ... 37
2.3. Oocyte Handling and Collection ... 37
 2.3.1. Handling Pipette Manufacture ... 37
 2.3.2. GV Oocyte Collection .. 37
 2.3.3. MII Egg Collection .. 38
2.4. Oocyte/Embryo Culture ... 38
 2.4.1. M2 Media ... 38
 2.4.2. MEM Media .. 39
 2.4.3. KSOM Media .. 39
 2.4.4. Strontium Activation ... 39
 2.4.5. Embryo Development .. 40
2.5. Mitomycin C (MMC) .. 40
 2.5.1. MMC Preparation and Cell Incubation ... 40
 2.5.2. MMC Sensitivity Assay ... 40
2.6. Quantitative Polymerase Chain Reaction (QPCR) .. 40
 2.6.1. RNA Collection and Isolation .. 40
 2.6.2. First Strand cDNA Synthesis .. 41
 2.6.3. QPCR ... 42
2.7. TUNEL Assay .. 44
2.8. Western Blotting .. 45
 2.8.1. Protein Collection and Quantification .. 45
 2.8.2. Gel Loading and Electrophoresis ... 46
 2.8.3. Protein Transfer .. 47
2.8.4. Antibody Incubation and Chemiluminescence ... 47
2.8.5. Immunoblot Antibodies ... 47
2.9. Fixation ... 49
 2.9.1. HeLa Cell Fixation ... 49
 2.9.2. Oocyte/Embryo Fixation .. 49
2.10. Immunofluorescence .. 49
 2.10.1. General Principles and Handling .. 49
 2.10.2. Immunofluorescence Procedure ... 50
 2.10.3. Immunofluorescence Antibodies ... 51
2.11. Imaging .. 51
 2.11.1. General Principles of Fluorescent Imaging .. 51
 2.11.2. Time-Lapse Imaging ... 52
 2.11.3. Confocal Imaging .. 53
2.12. Image Analysis and Data Preparation .. 53
 2.12.1. Live Cell Imaging .. 53
 2.12.2. Foci Counting .. 53
 2.12.3. Densitometric Analysis .. 54
 2.12.4. Statistical Analysis .. 54
3. Role of Gametogenetin 1 in Mitosis ... 55
 3.1. Introduction ... 55
 3.2. Results ... 57
 3.2.1. Combined SiRNA Produced Lowest GGN1 Expression 57
 3.2.2. Loss of GGN1 Resulted in Apoptosis ... 60
 3.2.3. GGN1 Knockdown Leads to Low Survival ... 63
 3.2.4. GGN1 Knockdown Resulted in Defective Mitotic Profile 65
 3.2.5. Imaging of Mitosis in GGN1 SiRNA Cells ... 72
 3.3. Discussion ... 77
 3.3.1. Multiple GGN Isoforms ... 77
 3.3.2. Limitations of SiRNA Transfection ... 78
3.3.3. Apoptosis in GGN1 SiRNA Cells ... 80
3.3.4. Possible Role of GGN1 in the FA Pathway ... 82

4. Gametogenetin 1 and FANCD2 in HeLa Cells .. 85
 4.1. Introduction ... 85
 4.2. Results .. 87
 4.2.1. MMC Sensitivity of HeLa Cells ... 87
 4.2.2. MMC Hypersensitivity of GGN1 SiRNA Cells 87
 4.2.3. GGN1 Depletion Affects FANCD2 Foci Formation 89
 4.2.4. FANCD2 Ubiquitination Unaffected in GGN1 SiRNA Cells 96
 4.3. Discussion ... 99
 4.3.1. Protein Transport .. 99
 4.3.2. MMC Hypersensitivity of GGN1 SiRNA Cells 100
 4.3.3. Methodology of FANCD2 Foci Counting .. 101
 4.3.4. GGN1 Depletion Affected FANCD2 Foci Formation but not Ubiquitination... 102

5. Effects of DNA Damage on Meiosis and Embryogenesis 106
 5.1. Introduction ... 106
 5.2. Results .. 108
 5.2.1. Experimental Design for Studying MMC Effects on Meiosis 108
 5.2.2. Long Maturation and MMC Exposure does not Affect Meiosis I 108
 5.2.3. Long Maturation and MMC Exposure Affects Meiosis II 111
 5.2.4. Short Maturation with Long MMC Exposure Alters MetII Alignment 113
 5.2.5. Short Maturation with Long MMC Exposure Affects PN Formation 113
 5.2.6. Short Maturation with Short MMC Exposure Does Not Affect Meiosis I 115
 5.2.7. Short Maturation with Short MMC Exposure Does Not Affect Meiosis II 117
 5.2.8. Short NCS Exposure Impairs Completion of Meiosis I 120
 5.2.9. Experimental Design for Studying MMC Effects on Embryogenesis 122
 5.2.10. Low MMC Concentration Delays First Embryonic Cleavage 122
 5.2.11. Optimisation of Blastocyst Culture .. 124
 5.2.12. Similar Blastocyst Rates between GV- and 1Cell-Treated Embryos 127
5.3. Discussion .. 133
 5.3.1. Oocytes Are Susceptible to DSBs ... 133
 5.3.2. Oocytes Have a High Tolerance for ICLs ... 135
 5.3.3. GV Oocytes Were Not More Susceptible to MMC than Embryos 136
6. FANCD2 in Oocytes and Embryos ... 139
 6.1. Introduction ... 139
 6.2. Results ... 141
 6.2.1. FANCD2 Foci Are Absent in Oocytes .. 141
 6.2.2. Oocytes have Capacity to Recognise DNA Damage 145
 1.1.1. FANCD2 Foci Present in 1-Cell Embryos ... 147
 1.2. Discussion ... 151
 1.2.1. FA Pathway Active during Embryogenesis but not Meiosis 151
 1.2.2. Oocytes have the Ability to Detect DNA Damage 154
 1.2.3. Possible Role of FANCD2 in Meiosis .. 155
2. General Discussion .. 157

References .. 162

Appendix I: Declaration of Authorship .. 194
Appendix II: Media ... 204
Appendix III: Hormones ... 208
Appendix IV: Buffers and Solutions .. 209
List of Figures

Figure 1.1 Types of DNA damage that elicit a DNA repair response..3
Figure 1.2 Overview of homologous recombination..6
Figure 1.3 Chemical reaction of Mitomycin C with DNA...8
Figure 1.4 Cellular functions of ATM and ATR..10
Figure 1.5 Overview of ATM and ATR activation in response to DNA damage.12
Figure 1.6 Steps involved in resolving a stalled replication fork caused by an ICL..........................15
Figure 1.7 Overview of the FA pathway..16
Figure 1.8 Overview of meiosis I and II..23
Figure 2.1 Haemocytometer and the counting chamber...35
Figure 2.2 Schematic showing the homology between GGN isoforms and position of peptide used to raise the GGN1 antibody..48
Figure 3.1 Efficacy of GGN knockdown by siRNA transfection...58
Figure 3.2. Loss of GGN1 decreases cell growth through loss of viability......................................61
Figure 3.3 Apoptosis occurred in GGN1 siRNA treated cells..62
Figure 3.4 Decreased survival rates exacerbated after mitosis...64
Figure 3.5 Time of cell death following thymidine release with GGN1 knockdown..........................66
Figure 3.6 GGN1 siRNA cells displayed a different mitotic profile compared to controls.67
Figure 3.7 Delayed mitotic entry and extended mitotic length in GGN1 siRNA cells........................69
Figure 3.8 Timing of the second mitotic division in individual HeLa cells treated with either GGN1 or control siRNA..70
Figure 3.9 GGN1 siRNA cells had extended interphase and mitosis length as well as delayed mitotic entry..71
Figure 3.10 Mitotic defects present in GGN1 siRNA cells..73
Figure 3.11 Examples of mitotic defects in GGN1 siRNA cells...74
Figure 3.12 High incidence of DNA morphology abnormalities in GGN1 siRNA cells....................76
Figure 4.1 Viability of HeLa cells following incubation with various doses of MMC given for 24 and 48h. ..88
Figure 4.2 MMC sensitivity of HeLa cells that were transfected with GGN1 siRNA.......................90
Figure 4.3 FANCD2 foci were detected on chromatin of HeLa cells during S, G2 and M phases of the mitotic cell cycle. ..91
Figure 4.4 Localisation of FANCD2 as nuclear foci in unsynchronized and synchronized cells.93
Figure 4.5 Nuclear FANCD2 foci were quantified by a software-based approach..........................94
Figure 4.6 FANCD2 foci counts in HeLa cells transfected with either Scr or GGN1 siRNA95
Figure 4.7 FANCD2 ubiquitination assayed by immunoblotting to determine the effects of GGN1 knockdown and MMC addition..97
Figure 4.8 Model of GGN1 function during ICL repair..105
Figure 5.1 Schematic depicting three different experimental approaches to examine meiosis completion. ..109
Figure 5.2 Long exposure to MMC has a slight detrimental effect on metII alignment110
Figure 5.3 Long exposure to MMC during IVM affects pronucleus formation. .. 112
Figure 5.4 MMC exposure during a shorter length of IVM affects metII alignment. 114
Figure 5.5 High dose MMC exposure during a shorter IVM affects pronucleus formation. 116
Figure 5.6 Short exposure of MMC does not affect completion of Meiosis I. 118
Figure 5.7 Short exposure of MMC during IVM does not affect completion of Meiosis II. 119
Figure 5.8 Short exposure of NCS during IVM impairs completion of Meiosis I. 121
Figure 5.9 Schematic depicting two parallel experiments for the comparison between MMC exposure during IVM or during embryogenesis. .. 123
Figure 5.10 MMC exposure can delay first embryonic cleavage. .. 125
Figure 5.11 KSOMaa provides high blastocyst formation rates for embryos. 128
Figure 5.12 High MMC dosages severely affect the rate of blastocyst formation. 130
Figure 5.13 Similar blastocyst formation rates when oocytes were treated with MMC either during IVM or embryogenesis. .. 131
Figure 6.1 FANCD2 showed little or no nuclear localisation in GV oocytes. .. 142
Figure 6.2 FANCD2 displayed spindle poles and microtubule localisation during Meiosis I. 143
Figure 6.3 FANCD2 displayed spindle poles and microtubule localisation during Meiosis II. 144
Figure 6.4 H2AX foci was detected on the chromatin of GV oocytes treated with MMC. 146
Figure 6.5 Titration of MMC dosages for use in 1-cell embryos. .. 148
Figure 6.6 FANCD2 foci in 1-cell embryos increased with MMC exposure regardless of treatment points.. ... 149
List of Tables

Table 2.1 Sequences of Three GGN1 SiRNA ... 34
Table 2.2 cDNA Priming Reaction Mix.. 41
Table 2.3 cDNA Synthesis Reaction Mix .. 42
Table 2.4 Primer Sequences Used for GGN1 QPCR ... 43
Table 2.5 QPCR Master Mix .. 43
Table 2.6 Cycling Conditions for QPCR .. 44
Table 2.7 Western Blot Sample Preparation Mix ... 46
Table 2.8 Excitation and Emission Wavelengths of Fluorochromes Used 51
Table 2.9 Laser and Light Wavelengths Used with Their Respective Fluorochromes 52
Table 5.1 Maturation and Development of Oocytes Treated with MMC at Different Stages 126
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-oxoG</td>
<td>8-oxo-7,8-dihydroguanine</td>
</tr>
<tr>
<td>9-1-1 complex</td>
<td>Rad9-Rad1-Hus1 Complex</td>
</tr>
<tr>
<td>A</td>
<td>Adenine</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ATM</td>
<td>Ataxia Telangiectasia Mutated</td>
</tr>
<tr>
<td>ATR</td>
<td>ATM and Rad3-related</td>
</tr>
<tr>
<td>ATRIP</td>
<td>ATR Interacting Protein</td>
</tr>
<tr>
<td>BLM</td>
<td>Bloom Syndrome Protein</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CCD</td>
<td>Cytochalasin D</td>
</tr>
<tr>
<td>Cdc</td>
<td>Cell Division Cycle</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>Chk</td>
<td>Checkpoint Kinase</td>
</tr>
<tr>
<td>COC</td>
<td>Cumulus Oocyte Complex</td>
</tr>
<tr>
<td>CRISP2</td>
<td>Cysteine-Rich Secretory Protein 2</td>
</tr>
<tr>
<td>D2-L</td>
<td>Monoubiquitinated FANCD2</td>
</tr>
<tr>
<td>D2-S</td>
<td>Non-ubiquitinated FANCD2</td>
</tr>
<tr>
<td>ddh2o</td>
<td>Double Distilled Water</td>
</tr>
<tr>
<td>DDR</td>
<td>DNA Damage Response</td>
</tr>
<tr>
<td>dHJ</td>
<td>Double Holliday Junction</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle Media</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleicacid</td>
</tr>
<tr>
<td>DNA-PK</td>
<td>DNA-dependent Protein Kinase</td>
</tr>
<tr>
<td>DSB</td>
<td>Double Stranded Break</td>
</tr>
<tr>
<td>E</td>
<td>Embryonic Day</td>
</tr>
<tr>
<td>FA</td>
<td>Fanconi Anemia</td>
</tr>
<tr>
<td>FAAP</td>
<td>FA Associated Protein</td>
</tr>
<tr>
<td>FAN1</td>
<td>Fanconi Associated Nuclease 1</td>
</tr>
<tr>
<td>FANC</td>
<td>FA Complementation Group</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal Calf Serum</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GEO</td>
<td>Gene Expression Omnibus</td>
</tr>
</tbody>
</table>
GFP Green Fluorescent Protein
GGN Gametogenetin
GGNBP Gametogenetin Binding Protein
GV Germinal Vesicle
GVBD Germinal Vesicle Breakdown
H2AX Histone 2A Variant Member X
HA Human Influenza Haemagglutinin
HCG Human Chorionic Gonadotrophin
HEK293 Human Embryonic Kidney Cells
HeLa Human Cervical Adenocarcinoma Cells
Hep-2 Human Laryngeal Epithelial Cells
HR Homologous Recombination
ICL Interstrand Crosslinks
ID complex FANCD2-FANCI Complex
IR Ionising Radiation
IU International Units
IVM In Vitro Maturation
kDa Kilodalton
Mad2 Mitotic Arrest Deficient 2
MDC1 Mediator of DNA Damage Checkpoint Protein 1
MII Metaphase II
MMC Mitomycin C
MRN Complex MRE11-Rad50-Nbs1 Complex
mRNA Messenger RNA
NCS Neocarzinostatin
NER Nucleotide Excision repair
NES Nuclear Export Sequence
NLS Nuclear Localisation Sequence
NOXA Phorbol-12-myristate-13-acetate-induced Protein 1
OAZ3 Ornithine Decarboxylase Antizyme 3
PB1/2 Polar Body Extrusion
PBS Phosphate Buffered Saline
PCNA Proliferating Cell Nuclear Antigen
PGC Primordial Germ Cells
PMSG Pregnant Mare Serum Gonadotrophin
PN Pronucleus
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>POG</td>
<td>Proliferation of Germ Cells</td>
</tr>
<tr>
<td>Polv</td>
<td>DNA Polymerase v</td>
</tr>
<tr>
<td>Pro-MI</td>
<td>Prometaphase I</td>
</tr>
<tr>
<td>PUMA</td>
<td>p53 Upregulated Modulator of Apoptosis</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidone</td>
</tr>
<tr>
<td>QPCR</td>
<td>Quantitative Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RAG</td>
<td>Recombination Activating Gene</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleicacid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RPA</td>
<td>Replication Protein A</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcription PCR</td>
</tr>
<tr>
<td>SAC</td>
<td>Spindle Assembly Complex</td>
</tr>
<tr>
<td>Scr siRNA</td>
<td>Scrambled siRNA</td>
</tr>
<tr>
<td>siRNA</td>
<td>Short Interfering RNA</td>
</tr>
<tr>
<td>SSB</td>
<td>Single Stranded Break</td>
</tr>
<tr>
<td>ssDNA</td>
<td>Single Stranded DNA</td>
</tr>
<tr>
<td>std. dev.</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>TLS</td>
<td>Translesion Synthesis</td>
</tr>
<tr>
<td>TopBP1</td>
<td>DNA Topoisomerase II Binding Protein 1</td>
</tr>
<tr>
<td>Tpx-1</td>
<td>Testis Specific Protein 1</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling</td>
</tr>
<tr>
<td>UAF</td>
<td>USP1-Associated Factor 1</td>
</tr>
<tr>
<td>Ub</td>
<td>Ubiquitin</td>
</tr>
<tr>
<td>UCC</td>
<td>Uneven Chromatin Condensation</td>
</tr>
<tr>
<td>USP1</td>
<td>Ubiquitin Carboxyl-Terminal Hydrolase 1</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V(D)J</td>
<td>Variable, Diverse and Joining Genes</td>
</tr>
</tbody>
</table>