Perfusion imaging in acute and evolving brain ischemia

By
Andrew Bivard BSc (Hons)

Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy

Submitted
10 July 2012
Declarations

STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Andrew Bivard

5 July 2012
ACKNOWLEDGEMENT OF AUTHORSHIP

I hereby certify that this thesis is in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a written statement from each co-author, endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

Andrew Bivard

5 July 2012
Acknowledgments

Current medical practice is multidisciplinary simply because no single person can possess the vast variety of skills required to comprehensively treat a patient. Therefore, any research involving patients utilises a wide range of skill sets from many different people. For this thesis to be completed I would like to thank the radiographers and stroke nurses at the John Hunter Hospital for their input and effort. Without their patient care and record keeping, the research in this thesis would not have been possible.

I would also like to express my gratitude to my supervisors, Associate Professor Mark Parsons and Professor Christopher Levi. During my PhD I was taught the most important aspects of stroke medicine and the theoretical underpinning of imaging by A/Prof Parsons. Professor Levi was instrumental in providing extensive research opportunities that I was able to take full advantage of. I was very lucky to have these supervisors, and was never once told “no” to research that I wished to undertake.
Preface

Publications included as part of the thesis:

5. Bivard A, Spratt N, levi C, Parsons, M. Perfusion CT in acute stroke A comprehensive analysis of infarct and penumbra. Radiology, RAD-12-0971
Statement of Contributions of Others

I, Dr Neil Spratt, attest that Research Higher Degree candidate Andrew Bivard contributed significantly to the data collection analysis and writing of the publications entitled:

5. Bivard A, Spratt N, Levi C, Parsons, M. Perfusion CT in acute stroke A comprehensive analysis of infarct and penumbra. Radiology, RAD-12-0971

Signature of Co-Author

Dr Neil Spratt
Name of Co-Author
5/7/2012
Date

Signature of Candidate

Andrew Bivard
Name of Candidate
5/7/2012
Date

Signature of Assistant Dean Research Training (ADRT)

Prof John Rostas
Full Name of ADRT

Date
Statement of Contributions of Others

I, Associate Professor Peter Stanwell, attest that Research Higher Degree candidate Andrew Bivard contributed to the data gathering, analysis, processing, writing and submission of the publications entitled:

Signature of Co-Author
A/Prof Peter Stanwell
Name of Co-Author

5/7/2012
Date

Signature of Candidate
Andrew Bivard
Name of Candidate

5/7/2012
Date

Signature of Assistant Dean Research Training (ADRT)
Prof John Rostas
Full Name of ADRT

Date
Statement of Contributions of Others

I, Professor Christopher Levi, attest that Research Higher Degree candidate Andrew Bivard contributed to the project design, data collection, analysis and writing of the publications entitled:

5. Bivard A, Spratt N, levi C, Parsons, M. Perfusion CT in acute stroke A comprehensive analysis of infarct and penumbra. Radiology, RAD-12-0971

Signature of Co-Author

Prof Christopher Levi
Name of Co-Author

5/7/2012
Date

Signature of Candidate

Andrew Bivard
Name of Candidate

5/7/2012
Date

Signature of Assistant Dean Research Training (ADRT)

Prof John Rostas
Full Name of ADRT

Date
Statement of Contributions of Others

I, Associate Professor Mark Parsons, attest that Research Higher Degree candidate Andrew Bivard contributed extensively to the project design, data collection, analysis, processing, statistical analysis and writing of the publications entitled:

4. Bivard A, Stanwell P Levi CR, Parsons MW. **Arterial spin labeling identifies tissue salvage and good clinical recovery after acute ischemic stroke**. Journal of Neuroimaging JON-12-3353.R1
5. Bivard A, Spratt N, Levi C, Parsons, M. **Perfusion CT in acute stroke A comprehensive analysis of infarct and penumbra**. Radiology, RAD-12-0971

Signature of Co-Author

A/Prof Mark Parsons
Name of Co-Author

5/7/2012
Date

Signature of Candidate

Andrew Bivard
Name of Candidate

5/7/2012
Date

Signature of Assistant Dean Research Training (ADRT)

Prof John Rostas
Full Name of ADRT

Date
Other publish articles, not part of the thesis

Published Abstracts (Presented at an international scientific meeting):

1. Andrew Bivard, Patrick McElduff, Christopher Levi, Neil Spratt, Mark Parsons, Univ of Newcastle, Australia. Defining the Extent of Irreversible Brain Ischemia Using Perfusion Computed Tomography; Stroke 2010;41;e200-e253;134

Presented at the International Stroke conference 2010 in San Antonio, Texas

2. Andrew Bivard, Patrick McElduff, Neil Spratt, Christopher Levi, Mark Parsons University of Newcastle (Newcastle, Australia) Validating Perfusion-Computed Tomography in Defining Extent of Brain Ischemia; Circulation 2010;122;e16: O304

Presented at Stroke services of Australia conference 2010 in Melbourne, Australia

Presented at the World Cardiology Congress 2011 in Beijing, China

4. Andrew Bivard, Patrick McElduff, Neil Spratt, Christopher Levi, Mark Parsons Mismatch of the penumbra in acute stroke Stroke 2011;41;e200-e253;134

Presented at the International Stroke Conference 2011 in Los Angeles California.

Presented at the European stroke conference 2011 in Hamburg, Germany

Presented at the European stroke conference 2011 in Hamburg, Germany

7. Soren Christensen; Bill O'Brien; Bijoy Menon; Andrew Bivard; Bruce Campbell; Patricia Desmond; Stephen Davis; Mark Parsons. Mapping of Cerebral
Vascular Territories Using Whole Brain Perfusion CT Imaging: A New Method
Stroke. 2012; 43: A54

Presented at the International Journal of stroke conference 2012 in New Orleans, Massachusetts

Presented at the International Stroke Conference 2012 in New Orleans, Massachusetts

Presented at the International Stroke Conference 2012 in New Orleans, Massachusetts
Table of contents

DECLARATIONS 2

ACKNOWLEDGMENTS 4

TABLE OF CONTENTS 12

TABLE OF FIGURES 16

LIST OF TABLES 17

PREFACE 5

ABBREVIATIONS 18

THESIS ABSTRACT 19

Chapter One: Acute Stroke and Imaging 22

Aims 22

Stroke 22

Treatment for acute ischemic stroke 23

The Ischemic Penumbra: the ‘Holy Grail’ of acute stroke therapy 27

Effect of time since stroke onset upon the penumbra 29

The role of acute stroke imaging 30

Non-contrast Computed Tomography (NCCT) 30

T1 and T2 imaging 35

Diffusion Weighted Magnetic Resonance Imaging 36

CT Angiography 32

Diffusible Tracers 38

Non diffusible tracers 41

Computed Tomography Perfusion 43

Current issues facing stroke imaging 41

References 45

Chapter Two: Computed Tomography Perfusion (CTP) 58

Theory and Modelling 58

Introduction: 58

Imaging types: 58

Perfusion Calculations 59

12
CHAPTER THREE: CLINICAL METHODS

Introduction 91
Patients 91
Inclusion and Exclusion Criteria 91
Definition of stroke onset time 92
Clinical Assessment 93
Image acquisition 94
Timing of scanning and clinical assessments 95
Reperfusion status and patient grouping 96
Image Processing 99
Statistical analysis 99
Eligible patients 101
References 103

CHAPTER FOUR: DEFINING THE EXTENT OF IRREVERSIBLE BRAIN ISCHEMIA USING PERFUSION COMPUTED TOMOGRAPHY.

Aim 104
Abstract 104
Introduction 105
Materials and Methods 106
Results 110
Discussion 117
References 122
CHAPTER EIGHT: CONCLUSIONS

Key issues addressed by this thesis:

1) Threshold selection
2) CT perfusion software – lack of standardisation
3) MR vs. CT for core and penumbra detection
4) Delay in passage of contrast to the ischemic region

Future directions
Further refinement
Closing remarks
Table of Figures

Figure 1.1 Stroke subtypes 20
Figure 1.2 A comparison between acute NCCT, and CTP in acute ischemic stroke. 25
Figure 1.3. A comparison between an acute CTP CBF map, CTA source map and an acute NCCT in a patient with a persistent right MCA occlusion. 34
Figure 1.4. A flow diagram for CTP processing. 34
Figure 1.5. The CTP mismatch concept. 37
Figure 1.6. The effect of delay and dispersion on CTP maps. 49

Figure 2.1. Graph illustrating a Tissue attenuation curve (TAC) plotted from perfusion CT data obtained in normal brain tissue. 67
Figure 2.2. The partial Volume effect. 68
Figure 2.3. AIF delay in PWI. 70
Figure 2.4 The maximum slope method of CTP post processing. 74
Figure 2.5. The ASL technique. 75
Figure 2.6. Diagram on an arterial spin labelling (ASL) time course. 79
Figure 2.7. Relationship between ADC and DWI. 80

Figure 4.1 AUC results for acute and subacute thresholds. 112
Figure 4.2. CBF results comparison. 113
Figure 4.3. Scatter plot comparing Acute DWI lesion volume with acute CTP CBF 114
Figure 4.4. Lesion clustering reduces the noise from a CTP scan. 116
Figure 4.5. Effects of different thresholds at defining the acute infarct core 121

Figure 5.1. Scatter plot results for lesion volume variation between imaging modalities. 140
Figure 5.2 Practical outcome of study results at determining patients who are eligible for acute treatment. 145
Supplementary figure 5.1 A comparison between CTP and PWI derived MTT 145% lesion map volumes in 67 patients. 147
Supplementary Figure 5.2 Characterisation of lesion growth between the three study sub groups in patients with acute and 24 hour DWI. 148

Figure 6.1 Acute perfusion lesion AUC results using Delay Time measures. 166
Figure 6.2 acute infarct core AUC results using the double threshold CBF and delay time measure. 166
Figure 6.3. One patient’s acute CTP processed with 6 different perfusion algorithms. 170

Figure 7.1. A patient with hyperperfusion at 24 hours. 198
Figure 7.2. A patient with persistent hypoperfusion. 200
List of Tables

Table 1.1. A summary of the effect of progressively reducing CBF on a cell in the brain. 29

Table 4.1: Range and increments used for ROC analysis to investigate CTP thresholds to define the infarct core 109

Table 5.1: Range and increments used for ROC analysis to investigate CTP thresholds to define critically hypoperfused tissue. .. 130
Table 5.2 Relative Delay Time (rDT) thresholds: accuracy at defining critically hypoperfused tissue in the ROC analysis ... 136
Table 5.3, Accuracy of thresholds to define the acute perfusion lesion. .. 137
Table 5.4. Infarct core threshold results. .. 139

Table 6.1: Range and increments used for ROC analysis ... 158
Table 6.2. Results for each of the six deconvolution analysis .. 165
Table 6.3.1. Maximum slope model results ... 179
Table 6.3.2. Partial deconvolution results .. 180
Table 6.3.3. The SVD results ... 181
Table 6.3.4. The SVD with delay correction results .. 182
Table 6.3.5. The circulant SVD with delay correction results .. 183
Table 6.3.6. The Stroke Stenosis with delay correction results ... 184

Table 7.1. The clinical and imaging findings of patients in this study. .. 194
Table 7.2. Characteristics of patients hyperperfusion or hypoperfusion. 195
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIF</td>
<td>Arterial Input Function</td>
</tr>
<tr>
<td>AIS</td>
<td>Acute Ischemic Stroke</td>
</tr>
<tr>
<td>ASL</td>
<td>Arterial Spin Labeling</td>
</tr>
<tr>
<td>BCD</td>
<td>Block Circulant Deconvolution</td>
</tr>
<tr>
<td>CBF</td>
<td>Cerebral Blood Flow</td>
</tr>
<tr>
<td>CBV</td>
<td>Cerebral Blood Volume</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>CTA</td>
<td>Computed Tomography Angiography</td>
</tr>
<tr>
<td>CTP</td>
<td>Computed Tomography Perfusion</td>
</tr>
<tr>
<td>ddSVD</td>
<td>Delay and dispersion corrected Single Value Deconvolution</td>
</tr>
<tr>
<td>DT</td>
<td>Delay Time</td>
</tr>
<tr>
<td>DWI</td>
<td>Diffusion Weighted Imaging</td>
</tr>
<tr>
<td>EPI</td>
<td>Echo Planner Imaging</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier Transform</td>
</tr>
<tr>
<td>ICH</td>
<td>Intracranial Haemorrhage</td>
</tr>
<tr>
<td>INR</td>
<td>International normalized ratio</td>
</tr>
<tr>
<td>IRF</td>
<td>Input residue function</td>
</tr>
<tr>
<td>MRA</td>
<td>Magnetic Resonance Angiography</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MTT</td>
<td>Mean Transit Time</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>PWI</td>
<td>Perfusion weighted imaging</td>
</tr>
<tr>
<td>rTPA</td>
<td>Recombinant tissue plasminogen activator</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single-photon emission computed tomography</td>
</tr>
<tr>
<td>SVD</td>
<td>Single value deconvolution</td>
</tr>
<tr>
<td>TIA</td>
<td>Transient ischemic attack</td>
</tr>
<tr>
<td>TTP</td>
<td>Time to peak</td>
</tr>
<tr>
<td>VOF</td>
<td>Venous out flow</td>
</tr>
</tbody>
</table>
Thesis Abstract

Background: Established acute stroke treatment protocols require further investigation to identify patients who are most likely to respond to treatment. The aim of hyper-acute ischemic stroke treatment is to salvage hypoperfused tissue that would infarct soon (penumbra), thus preserving brain tissue and allowing better functional recovery of an individual patient. Penumbral salvage is achieved by removal of a cerebrovascular occlusion in the cerebral circulatory system through the use of intravenous thrombolytic therapy (iv rtPA), or mechanical intra-arterial thrombus retrieval. However, the current clinical guidelines for the treatment of ischemic stroke totally fail to measure the volume of the treatable penumbra. This thesis aims to provide the technical ability to measure the acute penumbra and infarct core, using readily available clinical imaging techniques. Furthermore, this thesis also aims to provide the clinical relevance of measures of the acute infarct core and penumbra, when compared to current treatment guidelines.

Objectives: This thesis investigated clinically accessible perfusion imaging techniques, such as Computed Tomography Perfusion, as well as Magnetic resonance perfusion weighted imaging and arterial spin labelling, for their utility in acute ischemic stroke. The specific aims of this thesis were:

1) Determine a method by which to investigate perfusion imaging as compared to current gold standard measurements of tissue pathophysiology.

2) Investigate the threshold cut offs to determine the acute critical tissue pathophysiology measurements of the acute penumbra and infarct core.

3) Optimise the measures of the acute penumbra and infarct core.
4) Standardise the measure of the acute penumbra and infarct core, or failing standardisation, determine the optimal thresholds for the acute infarct core and penumbra for all software post processing algorithms available.

5) Determine the clinical importance of measures of the acute penumbra and infarct core.

6) Finally, compare various perfusion techniques to one another to determine cross compatibility of different measures.

Methods: A cohort of 320 acute ischemic stroke patients who were admitted to the John Hunter hospital were enrolled in the studies for this PhD. These patients underwent an acute CTP with a 24 hour follow-up MR sequence. Sixty seven patients also underwent an additional acute MR, with perfusion and diffusion imaging.

Clinical assessments were performed on all patients acutely, at 24 hours and at 90 days post stroke by a certified neurologist or neurology registrar. Clinical assessments included the National Institutes of Health Stroke Scale (NIHSS), and a modified Rankin Score.

All perfusion images underwent post processing using MiStar, a commercially available software package. MiStar generates the perfusion maps of cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT) and time to peak.

Once imaging was processed and ready for analysis, a broad range of statistical tests were used. Statistical tests included summery statistics such as linear regression, or specific statistical methods such as a receiver operator characteristic curve analysis.

Results: Acute CTP imaging was able to readily identify the volumes of the acute infarct core and penumbra. Analysis of different post processing algorithms revealed
there were obvious themes for detecting the acute tissue pathophysiology. A Time To Peak measures (or its variants of Tmax and Delay Time) were always optimal to define the acute perfusion lesion, and a CBF measure was optimal to define the acute infarct core. However, each post processing algorithm used, required a different threshold to define the acute tissue pathophysiology. Additionally, by defining the acute infarct core within the acute perfusion lesion, through restricting the volume of the infarct core, a greater level of accuracy was always achieved.

Next, the MR sequence, Arterial Spin Labelling was the only perfusion technique that is clinically available, that was able to show hyperperfusion. Hyperperfusion at 24 hours was associated with reperfusion and penumbra salvage. Therefore if a patient showed hyperperfusion in their stroke region (previously hypoperfused tissue), they ultimately had a much better clinical outcome compared to patients that did not reperfuse or hyper-perfuse.

Conclusions: This thesis demonstrated that it was possible to define acute ischemic tissue pathophysiology using CTP. Moreover, it was shown that measures of the acute penumbra and infarct core were directly related to clinical outcome, and likelihood of treatment success. The threshold measures of the acute infarct core and penumbra provided by this thesis can be applied to all acute clinical CTP scanning platforms in order to provide treatment relevant information. This underlines the importance of perfusion imaging in the acute clinical setting to guide treatment based decision making.