Microarray gene expression and cerebral cortical grey matter changes in treatment naive schizophrenia patients in Sri Lanka

Nishantha Kumarasinghe
MBBS

This thesis is submitted in partial fulfilment of the requirement for the Degree of PhD in Behavioural Sciences in Relation to Medicine
Faculty of Health School of Medicine and Public Health
University of Newcastle
Australia.

March 2012
Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1966.

Nishantha Kumarasinghe
Acknowledgement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Nishantha Kumarasinghe
Acknowledgement of Authorship

I hereby certify that this thesis is in the form of a series of published papers of which I am the principal author. References for publications are included as an appendix.

Nishantha Kumarasinghe

I certify the contribution of the candidate (Nishantha Kumarasinghe) as the First Author of the above-mentioned publications.

Professor Ulrich Schall (Principal Supervisor)

Dr Paul A Tooney (Co-Supervisor)
Acknowledgement of Contribution

Many people helped me to achieve my goal. I wish to place my appreciation on record for all of them.

I am grateful to my principal supervisor Professor Ulrich Schall for his guidance, dedication and generous time. His friendly personality, hospitality and warmth helped me to go through all the difficult times with ease and strengthened my commitment to work.

Next I would like to extend a warm thank you to my co-supervisor Dr. Paul A. Tooney for his guidance, kindness, generous support and dedication.

Also, my heartfelt thanks go to Prof John Rostas, who kindly responded to my initial inquiry in 2006.

My very sincere gratitude goes to Dr. Jayan Mendis and Dr. Gambheera Harischandra consultant psychiatrists from the Institute of Mental Health Angoda who supervised me and guided me during the diagnosis of disease at the time of patient inclusion, and administration of neuropsychological assessments. Further, I thank all the consultant psychiatrists and psychiatry post graduate trainees as well as medical officers at National Institute of Mental Health (Sri Lanka) who worked during the period of 2006-2008 for their generous support for the various aspects of this project.

My heartfelt gratitude goes to Prof. Surangi Yasawardene of the Department of Anatomy who provided the overall supervision of the local (Sri Lankan) component of this project. Her encouragement and support in various aspects of this project has been a great strength.

I am grateful to Senior Prof. Antoinette Perera, Professor of Family Medicine (Sri Lanka) who helped with the recruitment of healthy volunteers as controls, their selection and neuropsychological assessments, also for helping me with finer points in editing.

I am thankful to Dr Kanishka Suriyakumara for assisting me with MRI and genetic data collection and Mr Palitha Siriwardene, Dr Manthika Kodithuwakku and Dr
Sajewanie Wickramasinghe for assisting me to administer neuropsychological assessment tools.

I am thankful to all the OPD nurses and supporting staff of the National Institute of Mental Health (Sri Lanka) for helping with phlebotomy and follow up procedures. Also to Psychiatric social workers attached to NIMH for assisting with follow up studies.

My heartfelt gratitude goes to Paul E. Rasser for training and assistance in application of Cortical Pattern Averaging method and also to Jessica Bergmann, Lilly Knechtel and Stewart Oxley who helped in various segments in the application of LONI method and Paul M. Thompson for casting his magnificent expert eye on MRI manuscript which is the foundation for chapter two of this thesis.

A warm thank you goes to Natalie Beveridge who assisted me with gene expression data analysis (SAM), qPCR procedures and biological pathway analysis (Ingenuity®) and to Erin Gardiner for helping me with the microarray procedures. I would also like to thank Professor Rodney Scott for access to his laboratory, the microarray scanner, and his laboratory’s expertise that allowed me complete the gene expression data analysis process.

Genetech Molecular laboratory (Sri Lanka) provided the low temperature storage facility for blood samples (for RNA) and the Radiology Department of Asiri Surgical Hospital (Sri Lanka) provided the MRI facility for this project. I am grateful to them.

Finally, I would like to acknowledge the services of all local and foreign colleagues of mine especially Tim Ehlkes and Mary-Claire from Centre for Brain and Mental Health Research (University of Newcastle Australia) who were so knowledgeable and passionate in the field of neuroscience. Tim kindly assisted me with final formatting, PDF conversion, printing, and submission also.

This project was funded by the World Bank through the IRQUE project, the Schizophrenia Research Institute, University of Newcastle, and University of Sri Jayewardenepura and received infrastructure support from the Australian Schizophrenia Research Bank, the Hunter Medical Research Institute, and New
South Wales Health. Without their invaluable contribution, this project would not be a success.

I am ever grateful to my faculty for selecting me for the award of funds for this PhD through the IRQUE project.

Last but not least, I owe my wife Dammika and two sons, Randew and Dewmin for their patience. Without having their supportive atmosphere at home I would not have been able to dedicate my time in to this thesis during past seven years.

Nishantha Kumarasinghe
CONTENTS

TITLE PAGE i
STATEMENT OF ORIGINALITY ii
ACKNOWLEDGEMENT OF COLLABORATION iii
ACKNOWLEDGEMENT OF AUTHORSHIP iv
ACKNOWLEDGEMENT OF CONTRIBUTION v
CONTENTS viii
LIST OF FIGURES x
LIST OF TABLES xi
LIST OF SUPPLEMENTARY TABLES xi
SUMMARY 1

1. INTRODUCTION 3
 1.1. HISTORICAL OVERVIEW 3
 1.2. CURRENT DIAGNOSTIC DEFINITION 5
 1.3. HERITABILITY AND ―CANDIDATE GENES‖ OF SCHIZOPHRENIA 6
 1.4. BIOMARKERS AND ―ENDOPHENOTYPES‖ OF THE DISORDER 7
 1.5. CAPTURING GENE X GENE AND GENE X ENVIRONMENT INTERACTION 8
 1.6. MICROARRAY GENE CHIP TECHNOLOGY 9

2. REVIEW OF GENE EXPRESSION FINDINGS IN SCHIZOPHRENIA 12
 2.1. GENE EXPRESSION FINDINGS FROM POST MORTEM BRAINS 12
 2.2. GENE EXPRESSION FINDINGS FROM PERIPHERAL TISSUES 22
 2.3. GENE EXPRESSION FINDINGS FROM ANIMAL MODELS RESEARCH 24
 2.4. IMPORTANCE OF GENE EXPRESSION RESEARCH IN TO PREVIOUSLY UNTREATED SCHIZOPHRENIA PATIENTS 26

3. CHANGES IN PBMC GENE EXPRESSION FOLLOWING TREATMENT WITH ANTIPSYCHOTIC MEDICATION IN TREATMENT NAÏVE PATIENTS WITH SCHIZOPHRENIA 29
 3.1. INTRODUCTION 29
 3.2. METHODS AND MATERIALS 30
 3.2.1. PARTICIPANT RECRUITMENT AND COHORT CHARACTERISATION 30
 3.2.2. RNA PURIFICATION FROM PBMC 32
 3.2.3. mRNA EXPRESSION ARRAY ANALYSIS 33
3.2.4. QUANTITATIVE REAL-TIME REVERSE TRANSCRIPTION PCR (Q-PCR) VALIDATION 34
3.2.5. PATHWAYS AND NETWORK ANALYSIS 35
3.3. RESULTS 35
3.3.1. CHANGES IN SYMPTOMS RATINGS AFTER ANTIPSYCHOTIC MEDICATION TREATMENT 35
3.3.2. GENE EXPRESSION CHANGES BEFORE AND AFTER ANTIPSYCHOTIC MEDICATION TREATMENT 35
3.3.3. QPCR VALIDATION OF DIFFERENTIALLY EXPRESSED GENES 36
3.3.4. INGENUITY PATHWAYS ANALYSIS OF DIFFERENTIALLY EXPRESSED GENES 37
3.4. DISCUSSION 44
3.5. STUDY LIMITATIONS 57

4. CEREBRAL CORTEX GREY MATER DEFICITS AND THEIR ASSOCIATIONS WITH AGE, PSYCHOPATHOLOGY, COGNITION AND TREATMENT RESPONSE 59
4.1. INTRODUCTION 59
4.2. METHODS AND MATERIALS 62
4.2.1. PARTICIPANTS’ RECRUITMENT AND COHORT CHARACTERISTICS 62
4.2.2. MRI PROCESSING: APPLICATION OF CORTICAL PATTERN AVERAGING 64
4.2.3. DATA ANALYSIS 65
4.3. RESULTS 65
4.3.1. NEUROPSYCHOLOGY 65
4.3.2. REGIONAL GREY MATER DENSITY VARIANCE ACROSS BROMANN AREA 66
4.3.3. EVIDENCE OF SIGNIFICANT GLOBAL GREY MATER REDUCTION IN PATIENTS 66
4.3.4. GREY MATER REDUCTION VERSUS AGE AND THE DURATION OF ANTIPSYCHOTIC MEDICATION THERAPY 67
4.3.5. SYMPTOM RATINGS AND COGNITIVE FUNCTIONS VERSUS REGIONAL GREY MATER DENSITY 69
4.4. DISCUSSION 72
4.4.1. AGE EFFECTS ON GREY MATER IN SCHIZOPHRENIA 73
4.4.2. GREY MATER CORRELATES OF COGNITIVE IMPAIRMENT 73
5. EXPLORING ASSOCIATIONS OF PBMC GENE EXPRESSION AND GREY MATTER PATHOLOGY IN SCHIZOPHRENIA

5.1. INTRODUCTION

5.2. SUMMARY OF FINDINGS

5.3. ASSOCIATIONS OF GENE EXPRESSION, NEUROCOGNITIVE AND CLINICAL FINDINGS WITH REGIONAL GREY MATTER DENSITY

5.3.1. GLOBAL PBMC GENE EXPRESSION AND GLOBAL CEREBRAL CORTICAL GREY MATTER DEFICIT

5.3.2. SUMMARY FOR INDIVIDUAL GENES

5.3.3. REGION OF INTEREST APPROACH: ANTERIOR CINGULATE

5.4. CONCLUSIONS AND STUDY LIMITATIONS

5.5. FUTURE DIRECTIONS

6. REFERENCES

LIST OF FIGURES

FIGURE 3.1: GENE EXPRESSION CHANGES IN SCHIZOPHRENIA PATIENTS BEFORE AND AFTER ANTIPSYCHOTIC DRUG TREATMENT, BY QPCR.

FIGURE 3.2: CHANGES TO THE EIF2 SIGNALLING PATHWAY IN PBMCS FROM PATIENTS WITH SCHIZOPHRENIA.

FIGURE 4.1: FACTOR LOADING SCORES FOR BRODMANN AREAS IN LEFT AND RIGHT CEREBRAL HEMISPHERES

FIGURE 4.2: PARAMETRIC MAPPING (THRESHOLD P<0.05 UNCORRECTED) OF GREY MATTER GROUP DIFFERENCES

FIGURE 4.3: PARAMETRIC MAPPING (THRESHOLD P<0.05 UNCORRECTED) OF GREY MATTER

FIGURE 5.1: STUDY OUTLINE.

FIGURE 5.2: SCATTER PLOT OF GLOBAL GENE EXPRESSION BY GLOBAL GREY MATTER REPORTING FACTOR SCORES FOR HEALTHY CONTROL SUBJECTS (CON) AND SCHIZOPHRENIA PATIENTS (SCZ).
FIGURE 5.3: LATERAL AND MEDIAL VIEWS OF CEREBRAL CORRELATION MAPS OF INDIVIDUAL CANDIDATE GENE CONTRIBUTIONS TO GREY MATTER LOSS IN SCHIZOPHRENIA. 83
FIGURE 5.4: RPP21 CANDIDATE GENE EXPRESSION PREDICTED GLOBAL GREY MATTER CHANGES 88
FIGURE 5.5: GREY MATTER CORRELATIONS OF GENE DISC 1 EXPRESSION IN RELATION TO ANTIPLATFORMIC THERAPY. LEFT: EXPRESSION OF DISC1 90
FIGURE 5.6: SUMMARY OF THE FINDINGS INVOLVING DISC1 GENE EXPRESSION. 91

LIST OF TABLES

TABLE 2.1: GENE EXPRESSION STUDIES INTO POST MORTEM BRAIN TISSUE IN SCHIZOPHRENIA AND MOOD DISORDERS. 19
TABLE 2.2: GENE EXPRESSION STUDIES INTO PERIPHERAL BLOOD TISSUES IN SCHIZOPHRENIA AND BIPOLAR DISORDER. 27
TABLE 3.1: CHARACTERISTICS OF THE SCHIZOPHRENIA PATIENTS AND HEALTHY VOLUNTEERS 31
TABLE 3.2: DOWN REGULATED GENES IN SCHIZOPHRENIA PATIENTS BEFORE TREATMENT AND SIGNIFICANTLY UP REGULATED IN RESPONSE TO ANTIPLATFORMIC DRUG TREATMENT BY ARRAY ANALYSIS (SZ = SCHIZOPHRENIA AND C = CONTROL; * - P VALUES DETERMINED USING SAM ANALYSIS). 39
TABLE 3.3: DIRECT COMPARISON OF GENE EXPRESSION IN PBMCS TAKEN FROM PATIENTS WITH SCHIZOPHRENIA BEFORE AND THEN AFTER ANTIPLATFORMIC DRUG TREATMENT. (*SZ = SCHIZOPHRENIA AND C = CONTROL; ** - P VALUES DETERMINED USING SAM ANALYSIS) 47
TABLE 3.4: TOP RANKED BIOLOGICAL FUNCTIONS OVERREPRESENTED BY GENES DYSREGULATED IN SCHIZOPHRENIA BEFORE AND AFTER ANTIPLATFORMIC DRUG TREATMENT. 48
TABLE 3.5: INGENUITY CANONICAL PATHWAY ANALYSIS. 48
TABLE 5.1: SPEARMAN CORRELATION STATISTICS FOR SIGNIFICANT (P<0.05 UNCORRECTED) ASSOCIATIONS OF GENE EXPRESSION WITH REDUCED MEAN GREY MATTER IN CORTICAL BRODMANN AREAS (BA) FOR PATIENTS PRIOR TO PHARMACOTHERAPY AND HEALTHY CONTROL SUBJECTS COMBINED 82

APPENDIX

LIST OF PUBLICATIONS 115

LIST OF SUPPLEMENTARY TABLES

SUPPLEMENTARY TABLE 1: PRIMER SEQUENCES AND TAQMAN ASSAY DETAILS FOR QPCR 117
SUPPLEMENTARY TABLE 2: DIFFERENTIALLY EXPRESSED GENES IN PBMCS FROM SCHIZOPHRENIA PATIENTS PRIOR TO ANTIPSYCHOTIC DRUG TREATMENT (CONTROL VERSUS BEFORE ANALYSIS) 118

SUPPLEMENTARY TABLE 3: DIFFERENTIALLY EXPRESSED GENES IN PBMCS FROM SCHIZOPHRENIA PATIENTS AFTER WITH ANTIPSYCHOTIC DRUG TREATMENT (CONTROL VERSUS AFTER ANALYSIS) 135

SUPPLEMENTARY TABLE 4: DIFFERENTIALLY EXPRESSED GENES IN PBMCS FROM SCHIZOPHRENIA PATIENTS THAT DID NOT CHANGE WITH ANTIPSYCHOTIC DRUG TREATMENT 138

SUPPLEMENTARY TABLE 5: TOP RANKED BIOLOGICAL FUNCTIONS OVERREPRESENTED BY GENES DYSREGULATED IN SCHIZOPHRENIA BEFORE AND AFTER ANTIPSYCHOTIC DRUG TREATMENT 141

SUPPLEMENTARY TABLE 6: COMPARISON OF CORTICAL GREY MATTER MEASURES. 143
Summary

With an estimated heritability of 80%, molecular genetic research into schizophrenia has remained inconclusive. Recent large-scale genome-wide association studies only identified a small number of susceptibility genes with individually very small effect sizes. However, the variable expression of the phenotype is not well captured in diagnosis-based research as well as when assuming a “heterogenic risk model” (as apposed to a monogenic or polygenic model). Hence, the expression of susceptibility genes in response to environmental factors in concert with other disease promoting or protecting genes has increasingly attracted attention. Over the past decade, microarray gene expression research has been applied to post mortem brain tissue, peripheral tissues, and animal models of schizophrenia. Altered gene expression has been linked to presynaptic function, signalling, myelination, neural migration, cellular immune mechanisms, and response to oxidative stress consistent with multiple small effects of many individual genes. However, the majority of results are difficult to interpret due to small sample sizes (i.e. potential type-2 errors), confounding factors (i.e. medication effects) or lack of plausible neurobiological theory.

The current thesis investigated gene expression in peripheral blood mononuclear cells in a Sri Lankan cohort of drug treatment-naïve schizophrenia patients prior to introducing antipsychotic pharmacotherapy and again 6 to 8 weeks into treatment. Prior to introducing medication, 624 out of a total of 10,207 genes were found to be differently expressed (208 up- and 416 down-regulated) when compared to closely match healthy control subjects from the same communities. Differently expressed genes included new candidate genes of the disorder, such as AKT1, DISC1 and DGCR6. Patients significantly improved with antipsychotic pharmacotherapy of 200 mg/day chlorpromazine equivalents of risperidone or risperidone/haloperidol and abnormal expression was only confirmed for 106 genes (i.e. 6 up- and 100 down-regulated with 67 genes continued to show the same directional change in expression after treatment). These findings suggest a normalisation of the majority of altered gene expression
with treatment when compared to the more acute phase of illness at study entry. A pathway analysis of differentially expressed genes implicated dysregulation of biological functions, which are related to infectious diseases, inflammation and the immune system in patients with schizophrenia. Particularly AKT1 up-regulation prior to treatment was related to significant overrepresentation of altered genes in pathways that are triggered by growth factors and neurotrophic factors, but also respond to infections, including the EIF2 pathway, the mTOR and eIF4/p70S6K pathways.

The association of altered gene expression with cerebral grey matter pathology was then investigated with cortical pattern matching in high-resolution magnetic resonance imaging brain scans. The findings confirm widespread cerebral grey matter deficits in schizophrenia with grey matter deficits in the right dorsolateral prefrontal cortex as the strongest predictor of diagnosis. Symptom severity and treatment response were associated with regional grey matter deficits in older patients with a longer history of untreated illness, while significant structure/function associations with cognitive impairment in prefrontal and temporal cortices were found across all ages.

The expression of some of the candidate genes correlated with grey matter abnormalities. For instance, a higher expression of DGCR6 was associated with reduced grey matter in prefrontal, orbitofrontal, frontal, temporal, parietal and occipital areas. Moreover, DISC1 was found to be over-expressed in treatment-naïve patients while its expression normalised in the course of pharmacotherapy along with improving symptoms. DISC1 expression in patients also predicted grey matter deficits in right anterior cingulate cortex – a brain area strongly implicated in schizophrenia – along with grey matter deficits in various other associated brain regions.

While the results are promising and demonstrating the feasibility of linking in vivo peripheral schizophrenia candidate gene expression to in vivo measures of cerebral grey matter brain pathology, the findings should be interpreted with caution given the small sample size and when assuming the heterogeneous phenotype of the disorder.