EM-Based Channel Estimation for Multicarrier Communication Systems

Rodrigo Carvajal BSc. MSc.

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Electrical Engineering and Computer Science

The University of Newcastle
Callaghan, N.S.W. 2308 Australia

February, 2013
DECLARATION

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

I hereby certify that the work embodied in this thesis contains published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

Rodrigo Carvajal
August, 2012
I would like to thank my supervisors, Dr. Juan-Carlos Agúero and L. Prof. Graham Goodwin. I could not have been able to do all I have done without their trust and support. Special thanks to Dr. Boris Godoy, who was literally my lifesaver more than once. I would also like to thank Dr. Kaushik Mahata and Dr. Juan Yuz for collaborating with me. Thank you all for your help and support, and for giving me the invaluable opportunity of working with you and learning from you.

I would also like to thank Prof. Peter Schreier and A/Prof. Steve Weller for their support during these years.

I have been able to do all this work undoubtedly because of my family support, patience and love.

This thesis is dedicated to my wife, who started this difficult journey with me and has been there for me always.

To my children, who have been patiently there with me.

I would also like to thank my friends and postgraduate room mates in Newcastle. Special thanks to all the Chilean guys at the University, Milan Derpich, Eduardo Silva, Cristián Rojas, Daniel Quevedo, Mauricio Cea, Ricardo Aguilera, Ramón Delgado, Diego Carrasco. They all contributed in their own way to make my life a bit simpler, particularly during the very first months and the last year.

A particularly special thank to Fajar Suryawan, who I had many conversations with and always helped me to be calmed and to believe in me and in a brighter future, specially during the difficult period I went through. We did it !

To our Australian friends in Newcastle, Katie, Joel, Marina, Jasper, Emma, Nathan, Rose and Toby. Thank you for your true friendship and all the fantastic moments we shared with you.

Last but not least, Joan, Jim, Eduardo, Vero, Camilo, Nicolás and Milo. You became our family in Australia. I will be eternally grateful for your help, support, warmth, and company. I will always miss talking to you.
To my wife Vylma, and our children, Danae and Leonardo.
CONTENTS

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2 Multicarrier Channel and Signals Models</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Motivation</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Modelling</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1 Signal Model</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Channel Model and Cyclic Prefix</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 CFO Model</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4 PHN Model</td>
<td>14</td>
</tr>
<tr>
<td>2.2.5 Received Signal</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Proper and Improper Signals in Communication Systems</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Conclusions</td>
<td>19</td>
</tr>
<tr>
<td>3 Maximum Likelihood Estimation in Multicarrier Communication Systems</td>
<td>21</td>
</tr>
<tr>
<td>3.1 Maximum Likelihood estimation</td>
<td>21</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Properties of ML estimators</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The \textit{log-likelihood} function</td>
</tr>
<tr>
<td>3.2</td>
<td>The Expectation-Maximization algorithm</td>
</tr>
<tr>
<td>3.3</td>
<td>EM-based ML estimation in MC systems with phase distortion</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The EM Algorithm in MC systems</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Statistical properties of multicarrier signals</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Rao-Blackwellization</td>
</tr>
<tr>
<td>3.3.4</td>
<td>State Estimation for EM Algorithm Implementation</td>
</tr>
<tr>
<td>3.4</td>
<td>ML Estimation Accuracy in OFDM Systems</td>
</tr>
<tr>
<td>3.4.1</td>
<td>CRLB for MC systems</td>
</tr>
<tr>
<td>3.4.2</td>
<td>CRLB for (^{(\beta T)^{-1}})</td>
</tr>
<tr>
<td>3.5</td>
<td>Numerical Results</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Accuracy of PHN bandwidth ML estimator</td>
</tr>
<tr>
<td>3.5.2</td>
<td>MLE in MC systems with phase distortion</td>
</tr>
<tr>
<td>3.5.3</td>
<td>MLE in MC systems with CFO</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusion</td>
</tr>
<tr>
<td>4</td>
<td>Maximum A Posteriori Estimation</td>
</tr>
<tr>
<td>4.1</td>
<td>Maximum a Posteriori estimation</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Properties of MAP estimators</td>
</tr>
<tr>
<td>4.1.2</td>
<td>The \textit{log-posterior} function</td>
</tr>
</tbody>
</table>
4.2 The EM algorithm for MAP estimation ... 51
4.3 Infinite Mixtures and the EM Algorithm ... 52
4.4 Sparse Parameter Estimation ... 57
4.5 MAP-EM sparse estimation .. 61
4.6 Variance estimation in MAP problems ... 66
4.7 A More Complex Prior ... 67
4.8 Conclusions ... 69

5 Maximum a Posteriori Sparse Parameter Estimation with Applications 71

5.1 Prior probability density functions of interest in communications 72

5.2 MAP-EM Sparse Channel Estimation in MC Systems with CFO and Known Variance ... 73

5.2.1 System Model ... 74

5.2.2 Sparse channel estimation ... 74

5.2.3 Numerical Results ... 79

5.3 Sparse FIR Filter Estimation With Quantized Output Data 82

5.3.1 Introduction ... 82

5.3.2 System Description ... 83

5.3.3 FIR system identification having quantized data 84

5.3.4 Sparse FIR system identification having quantized data 86

5.3.5 Numerical Example ... 87
5.4 Conclusions ... 88

6 Conclusions .. 91

6.1 Summary of Contributions 92

6.1.1 Chapter 2 ... 92

6.1.2 Chapter 3 ... 92

6.1.3 Chapter 4 ... 92

6.1.4 Chapter 5 ... 93

6.2 Future Work ... 93

A Filtering and Smoothing .. 95

A.1 The Kalman Filter ... 96

A.2 Particle Filtering - Particle Smoothing 97

Bibliography ... 101
GLOSSARY

CIR: Channel Impulse Response. Impulse response of the channel, understood as a finite impulse response digital filter.

CFO: Carrier Frequency Offset.

CP: Cyclic Prefix. Artificial extension of the transmitted signal in multicarrier systems.

CRLB: Cramér-Rao lower bound.

DCT: Discrete Cosine Transform.

DFT: Discrete Fourier Transform.

EM: Expectation-Maximization.

IDFT: Inverse Discrete Fourier Transform.

IOT: Inverse Orthogonal Transform.

LLA: Local Linear Approximation.

LoS: Line of sight.

KF: Kalman Filter.

LO: Local Oscillator.

LQA: Local Quadratic Approximation.

LTE: Long Term Evolution. Digital radio access technology for next-generation mobile networks.

MAP: Maximum a Posteriori.
MC: Multicarrier.

ML: Maximum Likelihood.

MLE: Maximum Likelihood Estimation.

OFDM: Orthogonal Frequency Division Multiplexing.

OT: Orthogonal Transform.

pdf: Probability density function.

PF: Particle Filter.

PHD: Phase distortion. The combined effect of phase noise and carrier frequency offset.

PHN: Phase Noise.

PS: Particle Smoother.

QAM: Quadrature Amplitude Modulation. Digital modulation technique.

QPSK: Quadrature Phase Shift Keying. Digital modulation technique.

VMGM: Variance Mean Gaussian Mixture.

\(\chi^2_l(\lambda) \): Chi-squared distribution with \(l \) degrees of freedom, where \(\lambda \) is the random variable.

Im \{ \cdot \}: The imaginary part of. Mathematical operator that extracts the imaginary part of a complex scalar/vector.

\(\mathcal{N}_\theta(\mu, \Sigma) \): Normal (Gaussian) distribution, where the random variable is \(\theta \), the mean is given by \(\mu \) and covariance matrix is given by \(\Sigma \).

Re \{ \cdot \}: The real part of. Mathematical operator that extracts the real part of a complex scalar/vector.
This thesis addresses the general problem of channel estimation in Multicarrier communication systems. This estimation problem, inter-alia, includes the joint estimation of channel noise variance, carrier frequency offset and phase noise bandwidth. A general state-space model is developed for multicarrier systems that represents any modulation scheme, by separating the signals into their real and imaginary parts. The approach presented in this thesis relies on the statistical representation of the signals of interest. The approach is valid for any statistical representation. In particular, we present a linear and Gaussian structure associated with the transmitted signal, which is exploited by utilizing the Kalman filter. For nonlinear signals, nonlinear filtering is carried out by utilizing sequential Monte Carlo techniques. The estimation problem is solved by using Maximum Likelihood (ML) and Maximum a Posteriori (MAP) estimation, for which the Expectation-Maximization (EM) algorithm is considered. For ML estimation, a novel selection of hidden variables and parameters is proposed, whilst the maximization step is carried out by concentrating the cost in one variable (carrier frequency offset). For MAP estimation, the prior terms are expressed as variance-mean Gaussian mixtures. In this case, the channel estimate can be obtained in closed form within the EM framework. In the maximization step of the EM algorithm, the cost function is also concentrated in one variable (carrier frequency offset). For sparse channel estimation, an ℓ_1-norm regularization is considered. An Elastic Net penalty is also considered, which accounts for the different nature that communication channels can exhibit in a variety of environments. It is also shown that the utilization of variance-mean Gaussian mixtures present a general method for MAP estimation, which encompasses different penalizations and optimization methods, such as the Lasso, Group-Lasso, and local-linear/local-quadratic approximation for the Lasso, among others. The MAP estimation approach proposed in this thesis is illustrated with not only examples in MC communication systems, but also for sparse estimation with quantized data. Finally, it is also shown that the estimation of the channel noise variance is not straightforward, and that some modifications to the standard methods should be considered. It is shown that, in the
proposed MAP estimation approach, those modifications can be included in a simple manner.

The thesis also considers the impact of different levels of training on the overall parameter estimation problem. In particular, it is shown that the estimates of phase noise bandwidth are generally poor, and, hence, that high levels of training are required to obtain accurate channel estimates.