Maternal Probiotic Intervention as a Prophylaxis against the
Impact of Neonatal Stress:
Implications for Irritable Bowel Syndrome

By

JAVAD BAROUEI
MSc (Food Science and Technology)

A Thesis Submitted in Total Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

School of Environmental and Life Sciences
Faculty of Science and Information Technology
The University of Newcastle, New South Wales, Australia

February 2013
STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Signed……………………….

Date ………………..

Javad Barouei

School of Environmental and Life Sciences

The University of Newcastle

New South Wales

Australia

ii
ACKNOWLEDGMENTS

This thesis was made possible due to the many people who have provided unending support throughout my PhD candidature. Firstly, I would like to acknowledge my supervisor Associate Professor Deborah Hodgson for her tireless support and guidance. What I have learned and the person I have become because of her encouragement, enthusiasm and leadership cannot be expressed in words. I am most grateful to have not only acquired an amazing supervisor but a dear friend as well. Thank you Deb.

I would like also to thank my former co-supervisor Dr Michelle Adams for her support in the early stage of my PhD journey.

I would like to thank Mrs Elly Huber and Miss Donna Catford for their dedicated animal care, patient animal husbandry, and unswerving dedication to the research process.

Special thanks to Professor Mick Hunter, Dr Miles Bore and all the people in the School of Psychology for adopting me and for their ongoing support. I would like to specially thank Mrs Lynne Brunt, Mrs Sandra Dimmock and Mr Jeff Drummond.

Special thanks to Professor Hugh Dunstan, Professor Scott Holmes and Mrs Karen Kincaid for their ongoing support.

I would also like to express my gratitude to Dr Trevor Moffiet and Mr Kim Colyvas for their assistance with statistical analyses and to Jane Todd for copy-editing my thesis.

I acknowledge the assistance provided to me by the Australian Federal Government and the University of Newcastle via the provision of my Endeavour International Postgraduate Research Scholarship and University of Newcastle Postgraduate Research Scholarship.

A huge thank you to Dr Tamo Nakamura and past and present PhD students specially Adam and Luba for their advice and insightful guidance but mostly for being such good friends.

I would like to thank my parents and family and my wife’s family for their continued love, support and encouragement over the years.

More than anybody I would like to thank Mahta for all her patience, support and love.
Publications arising from this thesis

A. Peer reviewed journal paper

4. Barouei, J., Moussavi, M. & Hodgson, D. M. Perinatal Maternal Probiotic Intervention Impacts Immune Responses and Ileal Mucin mRNA Expression in a Rat Model of Irritable Bowel Syndrome (Submitted).

B. Peer reviewed conference abstracts

Table of Contents

ACKNOWLEDGMENTS.. iii
Publications arising from this thesis .. iv
A. Peer reviewed journal paper .. iv
B. Peer reviewed conference abstracts ... iv
Table of Contents ... vi
List of Tables ... xii
List of Figures ... x
Thesis Summary ... xii
Thesis Outline ... xiv
List of abbreviations... xv
Chapter I: Introduction ... 1
 1.1 Background and Aim ... 2
 1.2 The Stress Response .. 3
 1.2.1 Definition .. 3
 1.2.2 The Hypothalamic-Pituitary-Adrenal (HPA) Axis ... 4
 1.2.3 The Purpose of the Stress Response .. 7
 1.3 Programming Concept and Plasticity ... 8
 1.3.1 Prenatal Stress ... 10
 1.3.2 Postnatal Stress .. 16
 1.4 Irritable Bowel Syndrome (IBS) ... 21
 1.5 The Brain–Gut Axis .. 23
 1.5.1 Neuronal Control of the Brain–Gut Axis .. 24
 1.5.2 The Role of HPA Axis in the Brain–Gut axis ... 25
 1.5.3 Immunological Involvement in the Brain–Gut axis ... 26
 1.5.4 The Role of Enterochromaffin Cells in the Brain–Gut axis ... 29
 1.5.5 Gut Microbiota .. 30
 1.6 IBS – Treatment versus Prevention ... 32
 1.7 Probiotics .. 34
 1.7.1 Health Benefits of Probiotics ... 37
 1.7.2 Probiotics and IBS .. 40
 1.7.2.1 Probiotics for IBS Patients .. 40
 1.7.2.2 Neonatal Probiotic Intervention .. 45
 1.7.2.3 Maternal Probiotic Intervention .. 45
 1.8 Animal models of IBS ... 50
 1.8.1 Neonatal Noxious Stimuli Model .. 50
 1.8.2 Neonatal Inflammatory Stimuli .. 52
 1.8.3 Neonatal Maternal Separation .. 53
 1.9 Neonatal Maternal Separation model and Gut functions ... 54
 1.9.1 Gut-AssociateImmune Function ... 54
 1.9.2 Visceral Sensitivity and Motility Following Neonatal Maternal Separation 55
 1.9.3 Intestinal Epithelial Permeability ... 56
 1.10 Pathways Involved in the Genesis of Visceral and Permeability Alterations 57
 1.10.1 Corticotropin-Relasing Hormone (CRH) .. 58
 1.10.2 Nerve Growth Factor (NGF) ... 59
 1.10.3 Mast Cells (MC) ... 59
 1.10.4 CRH, NGF and MCs, All in One Frame .. 60
4.4 Results ... 135
4.5 Discussion... 145
4.6 Conclusion .. 151

Chapter V: Effect of Maternal Probiotic Intervention on the Integrity of Gut
Microbiota and Intestinal Mucin Gene Expression in the Maternally Separated
Rat Model of Irritable Bowel Syndrome ... 152
5.1 Abstract ... 153
5.2 Introduction ... 155
5.3 Methods and Materials ... 160
5.4 Results .. 161
5.5 Discussion ... 179
5.6 Conclusion .. 184

Chapter VI: General Discussion .. 185
6.1 Background .. 186
6.2 Overview of Findings .. 189
6.3 Summary of Key Findings and Significance .. 202
6.4 Conclusion .. 206
6.5 Future direction ... 208

References .. 209
List of Tables

Table 1. 1 Drugs in use or in clinical development for IBS .. 33
Table 1. 2 Microbial genera and species studied and applied as probiotics 35
Table 1. 3 Selection criteria of probiotic organisms for human use 36
Table 1. 4 Selected recent studies on health benefits of probiotics 38
Table 1. 5 Summary of studies on the effect of probiotic intervention in IBS patients 42
Table 1. 6 Neonatal stress models and irritable bowel syndrome features 51
Table 1. 7 Long-term consequences of different NMD models on gut functions 54
Table 1. 8 Symptoms of brain–gut axis dysfunction in IBS patients and the corresponding alterations induced by early life stress in rodents 62
Table 2. 1 Composition of the anaerobic dilution buffer ... 79
Table 2. 2 Bacterial cultures used for generating RT-PCR standard curves 80
Table 2. 3 Primers and probes used for detecting bacterial groups in faecal samples 81
Table 2. 4 Endogenous controls .. 85
Table 2. 5 TaqMan gene expression assays used for real-time reverse-transcription PCR .. 88
List of Figures

Figure 1. 1 Components of the Hypothalamic-Pituitary-Adrenal (HPA) axis (Yehuda, 2002) .. 6

Figure 1. 2 Comparative brain growth and development (indicated by the velocity curves) in human and rat. The major processes of cellular development are also shown. In rats events are shifted to the early postnatal period. Adapted from Galler et al. (1997). .. 19

Figure 1. 3 Schematic representation of the pattern of bidirectional brain–gut axis (Rhee, et al., 2009). Abbreviations: ANS, autonomic nervous system; CNS, central nervous system; EMS, emotional motor system; GI, gastrointestinal; HPA, hypothalamus–pituitary–adrenal ... 24

Figure 2. 1 A timeline schematic of experimental procedures. Maternal probiotics administered to subsets of animals from 10 days before mating until weaning (PND 22). Subsets of offspring were subjected to neonatal maternal separation (NS) and/or adult stress (AS). At varying time points (PND 24 and 86) subsets of animals were euthanised for endocrine, immune and gut functional analyses...... 73

Figure 2. 2 Standard curves for validation of endogenous controls 87

Figure 3. 1 Effect of maternal probiotic intervention and stress on ACTH levels 103

Figure 3. 2 Effect of maternal probiotic intervention on neonatal corticosterone levels ... 106

Figure 3. 3 Effect of maternal probiotics, stress and gender on adult corticosterone levels ... 107

Figure 3. 4 Effect of Neonatal maternal separation (NS), sex and maternal probiotic intervention on ileal mRNA expression of CRH-R1 (RQ, means + SE) at PND 24. ... 111

Figure 3. 5 Effect of Neonatal maternal separation (NS), sex, maternal probiotic intervention and adult restraint stress (AS) on ileal mRNA expression of CRH-R1 (RQ, means + SE) at PND 86. ... 112

Figure 3. 6 Effect of Neonatal maternal separation (NS), sex and maternal probiotic intervention on ileal mRNA expression of CRH-R2 (RQ, means + SE) at PND 24. ... 114

Figure 3. 7 Effect of Neonatal maternal separation (NS), sex, maternal probiotic intervention and adult restraint stress (AS) on ileal mRNA expression of CRH-R2 (RQ, means + SE) at PND 86. ... 115

Figure 3. 8 Effect of Neonatal maternal separation (NS), sex and maternal probiotic intervention on ileal mRNA expression of NGF (RQ, means + SE) at PND 24. 117

Figure 3. 9 Effect of Neonatal maternal separation (NS), sex, maternal probiotic intervention and adult restraint stress (AS) on ileal mRNA expression of NGF (RQ, means + SE) at PND 86. ... 118
Figure 4. 1 Effect of maternal probiotic intervention on plasma IFN-γ levels (means + SE) .. 136
Figure 4. 2 Effect of neonatal maternal separation (NS) and maternal probiotic intervention on plasma IL-6 levels (means + SE) at PND 24 138
Figure 4. 3 Effect of neonatal maternal separation (NS), adult restraint stress (AS) and maternal probiotic intervention on plasma IL-6 levels (means + SE) at PND 86 139
Figure 4. 4 Effect of Neonatal maternal separation (NS), sex, maternal probiotic intervention and adult restraint stress (AS) on plasma Haptoglobin levels (means + SE) at PND 86 .. 141
Figure 4. 5 Effect of maternal probiotic intervention, stress, and gender on plasma IgA levels ... 143
Figure 4. 6 Effect of maternal probiotic intervention on Ln-transformed faecal IgA concentrations (LnFIgA, means + SE) ... 144
Figure 5. 1 Effect of neonatal maternal separation (NS) and maternal probiotic intake on composition of gut microflora (Log CFU/gr, means + SE) in Wistar rats at PND 24 .. 165
Figure 5. 2 Effect of exposure to stress in adulthood (week 12) on faecal counts of aerobic bacteria and Bacteroides (Log CFU/gr, means + SE) 166
Figure 5. 3 Effect of maternal probiotic intake, neonatal maternal separation (NS) and adult restraint stress (AS) on faecal counts of anaerobes, enterococci and clostridia (Log CFU/gr, means + SE) in Wistar rats at week 12 ... 167
Figure 5. 4 Effect of maternal probiotic intake and AS on faecal counts of bifidobacteria (Log CFU/gr, means + SE) in Wistar rats at week 12 169
Figure 5. 5 Effect of sex, neonatal maternal separation, maternal probiotic intake and adult stress on faecal counts of E. coli (Log CFU/gr, means + SE) in rats 170
Figure 5. 6 Effect of Neonatal maternal separation (NS), sex and maternal probiotic intervention on ileal mRNA expression of MUC-2 (RQ, means + SE) at PND 24. .. 174
Figure 5. 7 Effect of neonatal maternal separation (NS), sex, maternal probiotic intervention and adult restraint stress (AS) on ileal mRNA expression of MUC-2 (RQ, means + SE) at PND 86 ... 175
Figure 5. 8 Micrographs showing the effect of neonatal maternal separation (NS) and maternal probiotic intervention on the morphology of ileal epithelium........ 177
Figure 5. 9 Micrographs showing the effect of neonatal maternal separation (NS) and maternal probiotic intervention on the morphology of distal colonic mucosa... 178
Thesis Summary

Neonatal stress is a common early life event, reported in some instances to be associated with adverse physiological alterations that persist into adulthood. This concept has been applied to the ontogeny of functional gastrointestinal disorders such as irritable bowel syndrome (IBS). The use of probiotics in IBS patients has emerged as a treatment approach to improve some IBS symptoms. In addition, new research in rodent models indicates that neonatal probiotic intervention may assist in the prevention of brain-gut axis dysfunctions believed to be associated with IBS. The aim of this study was to determine whether perinatal (both pre and post natal) maternal probiotic supplementation could act prophylactically to block endocrine, immune and gut dysfunctions in rats exposed to neonatal stress (maternal separation) either alone or in combination with adult exposure to stress. This model has been proposed to mimic most of the cardinal features of IBS.

The first series of studies (Chapter 3) examined the effect of maternal probiotic intervention on HPA-axis responses and gut-associated neuroendocrine function including analysis of mRNA expression of corticotropin releasing hormone receptors 1 and 2 (CRH-R1 and CRH-R2), and nerve growth factor (NGF). The results of the study revealed that maternal probiotic intervention induced activation of neonatal stress pathways as indicated by greatly enhanced corticosterone levels, which persisted into adulthood, and exacerbated ACTH responses to stress in adulthood. Maternal probiotic intervention affected gut-associated neuroendocrine gene expression profiles depending on age, gender and stress protocol. These effects include synergism, antagonism and normalisation.

The second series of studies (Chapter 4) examined the effect of maternal probiotic intervention on systemic and gut-associated immune functions. In this chapter plasma levels of cytokines IFN-γ, TNF-α and IL-6, plasma Haptoglobin and IgA, and luminal IgA levels were examined. While the stress protocol did not affect levels of the circulating cytokines in the offspring, maternal probiotic intervention down-regulated IFN-γ production (irrespective of stress conditions) and up-regulated IL-6 responses to neonatal or adult stress. Importantly however, maternal probiotic intervention enhanced immune defence capacity as indicated by increased plasma and luminal IgA. Maternal probiotic intervention was also associated with significant reductions in plasma
haptoglobin levels in all stressed and non-stressed animals to well below the baseline levels indicating enhanced loss of hemoglobin.

The third series of studies (Chapter 5) examined whether maternal probiotic intervention protected against gut microbiota and secretory state alterations induced by neonatal and/or adult stress. Neonatal and/or adult stress disrupted the normal balance of gut microbiota. Maternal probiotic intervention caused shifts in neonatal gut microflora as indicated by fostering an overgrowth of potential negative bacteria such as *E. coli*, enterococci and clostridia in stressed and non-stressed pups, resembling that of neonatally stressed pups in the vehicle subset. In adulthood maternal probiotic intervention was associated with a disruption of the normal balance of gut flora when coupled with neonatal stress, but also restoration of some gut bacterial groups to normal in stressed animals. Maternally separated animals displayed greatly decreased ileal mucin gene expression which was further decreased by exposure to adult stress. Maternal probiotic intervention decreased neonatal ileal MUC2 gene expression. In adulthood however, maternal probiotic intervention reversed the decline in mucin gene expression of stressed males.

Collectively the studies presented in the current thesis are the first to demonstrate the influence of maternal probiotic intervention on the neuroendocrine, immune and gut function in a rat model of irritable bowel syndrome. Maternal probiotic intervention exhibited mixed positive and negative effects on brain, immune and gut function, depending on age, gender and stress protocol applied. By modifying the probiotic preparations utilised (e.g., changes in the composition, dose and method of delivery) and optimising time of use, it might be possible to improve this approach to minimise the adverse outcomes. It is clear however, that maternal probiotic intervention may be a viable means to improve brain-gut outcome in ‘at risk’ neonates exposed to stress in early life and at increased risk of IBS in later life.
Thesis Outline

A brief outline of the thesis is provided here to assist the reader. The thesis comprises six separate chapters.

Chapter 1
Chapter 1 provides a comprehensive review of published literature on early life stress, Irritable Bowel Syndrome and probiotics. It highlights areas of research that have not been explored in this field, and presents the research issues to be addressed in the thesis.

Chapter 2
Chapter 2 provides detail of the general and specific methods used in this thesis.

Chapter 3
Chapter 3 characterises the effect of maternal probiotic intervention on stress-induced alterations to HPA-axis activity and gut-associated neuroendocrine gene profiles.

Chapter 4
Chapter 4 characterises the effect of maternal probiotic intervention on stress-induced alterations to the immune system and gut-immune responses.

Chapter 5
Chapter 5 characterises the effect of maternal probiotic intervention on stress-induced alterations to the normal balance of gut microbiota and intestinal mucin gene expression.

Chapter 6
The thesis closes with Chapter 6, which includes an overall summary of the findings of this work, conclusions and recommendations for future research.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>ADHD</td>
<td>Attention-Deficit Hyperactivity Disorder</td>
</tr>
<tr>
<td>ANS</td>
<td>Autonomic Nervous Systems</td>
</tr>
<tr>
<td>APCs</td>
<td>Antigen-presenting Cells</td>
</tr>
<tr>
<td>AS</td>
<td>Adult Restraint Stress</td>
</tr>
<tr>
<td>CBG</td>
<td>Corticosterone-binding Globulin</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous Systems</td>
</tr>
<tr>
<td>CRD</td>
<td>Colorectal Distension</td>
</tr>
<tr>
<td>CRH</td>
<td>Corticotropin Releasing Hormone</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CT</td>
<td>Threshold Cycles</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>EMS</td>
<td>Emotional Motor System</td>
</tr>
<tr>
<td>ENS</td>
<td>Enteric Nervous System</td>
</tr>
<tr>
<td>Fbgn</td>
<td>Fibrinogen</td>
</tr>
<tr>
<td>FGIDs</td>
<td>Functional Gastro-intestinal Disorders</td>
</tr>
<tr>
<td>GF</td>
<td>Germ Free</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal Tract</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-Aminobutyric Acid</td>
</tr>
<tr>
<td>GLMM</td>
<td>Generalised Linear Mixed Model</td>
</tr>
<tr>
<td>GR</td>
<td>Glucocorticoid receptor</td>
</tr>
<tr>
<td>H&E</td>
<td>Haemotoxylin and Eosin</td>
</tr>
<tr>
<td>Hp</td>
<td>Haptoglobin</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamic–Pituitary–Adrenal</td>
</tr>
<tr>
<td>HSD2</td>
<td>11ß-Hydroxysteroid Dehydrogenase Type 2</td>
</tr>
<tr>
<td>IBS</td>
<td>Irritable Bowel Syndrome</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IgA</td>
<td>Immunoglobulin A</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IR</td>
<td>Immunoreactivities</td>
</tr>
<tr>
<td>LP</td>
<td>Lamina Propria</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility Complex</td>
</tr>
<tr>
<td>MNP</td>
<td>Myenteric Neuronal Plexus</td>
</tr>
<tr>
<td>MPO</td>
<td>Myeloperoxidase</td>
</tr>
<tr>
<td>MRD</td>
<td>Maxidam Recovery Diluents</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MUC</td>
<td>Mucin</td>
</tr>
<tr>
<td>NGF</td>
<td>Nerve Growth Factor</td>
</tr>
<tr>
<td>NS</td>
<td>Neonatal Maternal Separation</td>
</tr>
<tr>
<td>NNS</td>
<td>Non-Neonatal Stress</td>
</tr>
<tr>
<td>OF</td>
<td>Open Field</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral Blood Mononuclear Cells</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PMN</td>
<td>Polymorphonuclear Neutrophils</td>
</tr>
<tr>
<td>PND</td>
<td>Postnatal Day</td>
</tr>
<tr>
<td>PVN</td>
<td>Para-Ventricular hypothalamic Nucleus</td>
</tr>
<tr>
<td>RCM</td>
<td>Reinforced Clostridial Medium</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Real Time polymerase chain reaction</td>
</tr>
<tr>
<td>SHRP</td>
<td>Stress Hyporesponsive Period</td>
</tr>
<tr>
<td>sIL-6R</td>
<td>IL-6 soluble receptor</td>
</tr>
<tr>
<td>SNP</td>
<td>Submucosal Neuronal Plexus</td>
</tr>
<tr>
<td>TB</td>
<td>Toulidine Blue</td>
</tr>
<tr>
<td>TGF-β2</td>
<td>Transforming Growth Factor β2</td>
</tr>
<tr>
<td>Th</td>
<td>T-helper</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Necrosis Factor</td>
</tr>
<tr>
<td>VIP</td>
<td>Vasoactive Intestinal Peptide</td>
</tr>
<tr>
<td>YEL</td>
<td>Yeast Extract Lactate</td>
</tr>
</tbody>
</table>