Paediatric Obesity, Inflammation & Asthma

Megan Elizabeth Jensen

BNutrDiet(Hons)

A thesis submitted for the degree of Doctor of Philosophy

University of Newcastle, Australia

October 2012
Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to my knowledge and belief, contains no material previously published or written by another person, except where due reference has been given in text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Acknowledgement of Authorship

I hereby certify that the work embodied in this thesis contains published papers/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications/scholarly work.

..
Megan E Jensen
Acknowledgements

The research included as part of this thesis could not have been conducted without the generous support from the Gastronomic Society and Neil Slater, Anne Greaves and family, the Hunter Children’s Research Foundation, the Hunter Medical Research Institute, and the University of Newcastle Asthma Priority Research Centre. Thank you to the wonderfully helpful and supportive Respiratory Research team at HMRI. Deborah, you are a legend, always on the ball and making sure everything runs smoothly for all of us. It has been an absolute pleasure to be a part of such a great team and develop my research skills in such a supportive and cooperative environment.

Thank you to Patrick McElduff for statistical consultation and ‘de-confusing’ the analyses; Majella Maher, Jeff Pretto and Allyson Upward for your invaluable help with plethysmography; Robin Callister for her input re calorimetry; Elroy Aguiar for giving up his time to assist with calorimetry; the Pediatric Sleep Unit staff for their patience in the evening and the early hours of the morning when recruitment interfered with their routine; Fiona Latham-Smith for her enthusiastic assistance with the sleep projects; and thank you to Jodi Hilton for her clinical input and enthusiasm.

To my outstanding supervisors, without whom I could not have completed the research herein, I have learnt so much from each of you over the past 3.5 years and am indebted to you for your guidance, advice, critical input and constructive feedback. Peter, your intellectual input has been priceless and I appreciate your time and support, and for encouraging me to broaden my creative thinking. I thank you for the confidence you’ve shown in my academic abilities and the opportunities that you have provided. Thank you to Clare Collins for always being available, for providing prompt and poignant advice and feedback, and for your continual motivation, especially in the final stages. To the awesome Lisa Wood - you are a stand out star! Thank you for putting my needs as a student first. You have endured the tears, the fears, the excitement and successes, and I have been grateful to have you backing me every step of the way. I thank you for seeing my academic potential and for creating an environment in which this could develop.
This thesis could not have finalised if it were not for all the amazing and tolerant people in my life. Thank you to my close friends (you know who you are!) for their continual love and support. Special mention to my colleagues and dear friends - it has always cheered me up to come into work and see your faces. Amber, you were always good for a laugh (much needed when the pressure was on) and thank you for your help with the clinical workload. Bron, your kind-hearted nature has meant you’ve always been there for me. Hales, thanks for reassuring me that everything will be alright! Jo, thanks for being a good listener, empathetic, reliable and helping out with the clinical workload. And thanks to Adrian, whose small but thoughtful notes and emails at just the right time, picked me up.

German, you’re on the opposite side of the world but you have been there for me whenever I need, regardless of the hour of day. Your texts from across the globe have made me smile and kept me motivated. To my special crew who dance to the same beat, the Sambafrogs! – you have each made an incredible stamp on my life, brightened my days and provided the balance I’ve needed. Thank you to Dustin, an enduring source of emotional support these past few months. Thank you for listening, for caring, for being flexible, patient and understanding; thank you for the DM days, pots of chai, and for doing what you can to help make things easier.

Thank you to my family who have always believed in me, pushed and motivated me in my academic pursuits, and who have been continually supportive, tolerant and understanding for the past 26 years. To my beautiful dancers, Jordan and Madi, who were happy to spend time with their Aunty Megs, even though that often meant reading quietly next to me and stealing a hug while I continued to work. Mum and Dad, you’ve always encouraged and supported me as a person, as well as in my academic pursuits. Thank you for always being there, for the home cooked meals, for the hugs, for the continual reassurance, the list goes on! Thank you for providing a soft place to land when things were hard.

To my beautiful second family, who accepted me into their home and hearts and have been a wonderful source of support, strength, good coffee, laughter, fun and inspiration. Thank you to Eva and Django for my morning wake-up; thank you to Jean for always making me laugh; and thank you from the bottom of my heart to my partner in crime, Julia, for being the most amazing and stoic friend anyone could wish for! Thanks for the dance!
Publications relating to this Thesis

PEER-REVIEWED MANUSCRIPTS

 Statement of contribution: Review of the literature; manuscript preparation.

 (Invited review; accepted 20 December 2011).

 Statement of contribution: Involved in the review concept design; review of the literature; manuscript preparation.

 Statement of contribution: Involved in generating the review question and the design; protocol development and preparation.

 Statement of contribution: Hypothesis generation; data search, entry and management; statistical analysis and interpretation; manuscript preparation.

 Statement of contribution: Involved in study design; data collection, entry and management; statistical analysis and interpretation; manuscript preparation.
6 Jensen ME, Wood LG, Williams R, Collins CE. Associations between Sleep Architecture, Dietary Intake and Physical Activity in Children: A Systematic Review. SR511. Conditionally accepted to the JBI Library of Systematic Reviews, Dec 20th 2012.

Statement of contribution: Involved in the literature search; critical analysis of literature; data extraction; manuscript preparation.

Statement of contribution: Design and implementation of the dietary intervention; data collection, entry and management; statistical analysis and interpretation; manuscript preparation.

Statement of contribution: Hypothesis generation; data collection, entry and management; statistical analysis and interpretation; manuscript preparation.

PEER-REVIEWED ABSTRACTS

INVITED SEMINAR PRESENTATIONS

Table of Contents

Paediatric Obesity, Inflammation & Asthma ... i

Statement of Originality ... ii

Acknowledgement of Authorship ... ii

Acknowledgements ... iii

Publications relating to this Thesis .. v

Table of Figures ... xiii

Table of Tables ... xiv

Abbreviations ... xvi

Abbreviations ... xvi

Synopsis ... 18

1. Chapter I: Introduction ... 21

1.1 Obesity in children and adolescents .. 22

1.1.1 Prevalence & Manifestation ... 22

1.1.2 Health impact ... 23

1.1.3 Adipose tissue dysfunction & systemic inflammation in obesity 24

1.2 Asthma in children and adolescents .. 33

1.2.1 Prevalence and manifestation ... 33

1.2.2 Airway inflammation in asthma ... 34

1.3 Obese Asthma in Children & Adolescents ... 37

1.4 Manifestations of the Obese Phenotype in Asthma ... 39

1.4.1 Symptoms, exacerbations and Quality of Life .. 41

1.4.2 Lung function and airway hyper-responsiveness .. 42

1.4.3 Airway and systemic inflammation .. 43

1.4.4 Medication use ... 45

1.5 Mechanisms of the Obese Phenotype in Asthma ... 46

1.5.1 Inflammation in Obese Asthma ... 48

1.5.2 Growth, body composition and the mechanical effects of obesity 53

1.6 Obesity Risk Factors in Children with Asthma .. 56

1.6.1 Sleep as a Risk Factor for Obesity in Asthma .. 57

1.6.2 Altered Appetite Control & Dietary Intake with Sleep Disturbance 60

1.6.3 Altered Physical & Sedentary Behaviour with Sleep Disturbance 64

1.7 Weight loss in Asthma ... 66

1.7.1 Symptoms, Quality of Life and medication usage with weight loss 67

1.7.2 Lung function and airway hyper-responsiveness with weight loss 68

1.7.3 Airway and systemic inflammation with weight loss 70

1.8 Hypotheses and Aims of Thesis .. 71

1.8.1 Key Points of Background to Thesis ... 71

1.8.2 Hypotheses of Thesis .. 72

1.8.3 Aims of Thesis ... 72
9. Appendices..193
 9.1 Appendix 1: Participant information sheet and assent form for cross-sectional study ..194
 9.2 Appendix 2: Guardian information sheet and assent form for cross-sectional study 199
 9.3 Appendix 3: Medications withheld prior to appointments.............................204
 9.4 Appendix 4: Participant information sheet and assent form for obesity risk factors study: 7-12 years ...205
 9.5 Appendix 5: Participant information sheet and assent form for obesity risk factors study: 12-17 years ...208
 9.6 Appendix 6: Guardian information sheet and assent form for obesity risk factors study ..212
 9.7 Appendix 7: Participant information sheet and assent form for weight loss study 216
 9.8 Appendix 8: Guardian information sheet and assent form for weight loss study 221
 9.9 Appendix 9: Meal plans used in weight loss study227
 9.10 Appendix 10: Nutritional education session handouts240
Table of Figures

Figure 1.1. Adipose tissue is a source of inflammation. ...26
Figure 1.2 Eosinophilic and neutrophilic asthma are activated by different stimuli and operate via different inflammatory pathways. ...35
Figure 1.3. Mechanisms of Paediatric Obese Asthma. ...47
Figure 1.4. Hypothesised link between obesity and asthma. ...49
Figure 1.5. Mechanisms by which sleep disturbance in asthma may lead to increased risk of weight gain ...60
Figure 1.6. Weight loss in asthma..67
Figure. 3.1 Lung volumes indices as measured by lung plethysmography.95
Figure. 3.2 The proportion of eosinophilic asthma (≥2% sputum eosinophils) and non-eosinophilic asthma among obese and non-obese, male and female children. .96
Figure. 3.3 Systemic inflammatory biomarkers in obese & non-obese children, with & without asthma. ...100
Figure 4.1. DEXA scan depicting key regions of interest. ...110
Figure 4.2. Bland-Altman plot of dual DEXA scans of a) thoracic fat mass, and b) thoracic lean mass. ...116
Figure 5.2. Sleep duration and sleep efficiency in children referred for an overnight polysomnography. ..130
Figure 5.3. Fasting plasma levels of appetite hormones in children referred for an overnight polysomnography ...131
Figure 6.1. Participant flow through randomised controlled trial142
Figure 6.2. Change (∆) from baseline in a) Body mass index (BMI) z-score and b) Total body fat (%) following 10 week dietary intervention in obese asthmatic children. ..147
Figure 6.3. Change (∆) from baseline in a) Expiratory Reserve Volume (ERV) and b) Asthma Control Questionnaire (ACQ) score following 10 week dietary intervention in obese asthmatic children. ..150
Table of Tables

Table 1.1a: Cross-sectional studies in children that have measured systemic inflammation ... 28
Table 1.1b: Cross-sectional studies in children that have measured systemic inflammation .. 30
Table 1.1c: Cross-sectional studies in children that have measured systemic inflammation .. 31
Table 1.2: Manifestations of obese asthma in children and adults 40
Table 3.1: Subject characteristics & lung function summarised by obesity and asthma status ... 94
Table 3.2: Exhaled nitric oxide and sputum inflammatory cell counts by obesity and asthma status .. 98
Table 3.3: Exhaled nitric oxide and sputum inflammatory cell counts in asthmatic children, by gender and obesity status 99
Table 4.1: Subject characteristics by gender and asthma status 113
Table 4.2: Body weight as a predictor of FRC and ERV 114
Table 4.3: Total body fat as a predictor of FRC and ERV 114
Table 4.4: Total body lean mass as a predictor of FRC and ERV 114
Table 4.5: Total body lean mass as a predictor of FEV₁, FVC and TLC 115
Table 4.6: Total body weight as a predictor of FEV₁, FVC and TLC 115
Table 4.7: Total body fat mass as a predictor of FEV₁, FVC and TLC 115
Table 4.8: Intra class correlations between dual DEXA scans 117
Table 5.1: Subject characteristics of children with and without asthma, referred for an overnight polysomnography 129
Table 5.2: Sleep quantity and quality in children with and without asthma, referred for an overnight polysomnography 130
Table 5.3: Metabolic biomarkers in children with and without asthma, referred for an overnight polysomnography 131
Table 5.4: Dietary intake measured by the Australian Child and Adolescent Eating survey in children with and without asthma, referred for an overnight polysomnography ... 132
Table 6.1: Subject characteristics at baseline, randomised to dietary intervention or wait-list control group for ten weeks 146
Table 6.2: Change in anthropometric & metabolic variables in obese children with asthma, following randomisation to diet-induced weight loss intervention or no intervention for ten weeks..148

Table 6.3: Change in lung function & clinical asthma outcomes in obese children with asthma, following randomisation to diet-induced weight loss intervention or no intervention for ten weeks..149

Table 6.4: Change (Δ) in airway & systemic inflammatory markers in obese children with asthma, following randomisation to diet-induced weight loss intervention or no intervention for ten weeks..151

Table 6.5: Spearman rank correlation coefficients between change (Δ) in BMI z-score, lung function, and airway and systemic biomarkers.152
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQ</td>
<td>Asthma Control Questionnaire</td>
</tr>
<tr>
<td>AHR</td>
<td>Airway hyperresponsiveness</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>APARQ</td>
<td>Adolescent Physical Activity Questionnaire</td>
</tr>
<tr>
<td>ASAQ</td>
<td>Adolescent Sedentary Activity Questionnaire</td>
</tr>
<tr>
<td>BAL</td>
<td>Bronchoalveolar lavage</td>
</tr>
<tr>
<td>BHR</td>
<td>Bronchial hyperresponsiveness</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CAMP</td>
<td>Childhood Asthma Management Program</td>
</tr>
<tr>
<td>CRP</td>
<td>C-Reactive Protein</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>DEXA</td>
<td>Dual-energy x-ray absorptiometry</td>
</tr>
<tr>
<td>eNO</td>
<td>Exhaled nitric oxide</td>
</tr>
<tr>
<td>ERV</td>
<td>Expiratory reserve volume</td>
</tr>
<tr>
<td>FEV<sub>1</sub></td>
<td>Forced expiratory volume in one second</td>
</tr>
<tr>
<td>FRC</td>
<td>Functional residual capacity</td>
</tr>
<tr>
<td>FCI-II</td>
<td>Food Cravings Index-II</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced vital capacity</td>
</tr>
<tr>
<td>GINA</td>
<td>Global Initiative for Asthma</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Homeostasis model assessment of insulin resistance</td>
</tr>
<tr>
<td>ICS</td>
<td>Inhaled corticosteroid</td>
</tr>
<tr>
<td>IgE</td>
<td>Immunoglobulin E</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MCP</td>
<td>Monocyte chemotactic protein</td>
</tr>
<tr>
<td>MEF</td>
<td>Maximum expiratory flow</td>
</tr>
<tr>
<td>METS</td>
<td>Metabolic Equivalent</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated fatty acid</td>
</tr>
<tr>
<td>NF-kB</td>
<td>Nuclear factor-kappa B</td>
</tr>
<tr>
<td>PAI</td>
<td>Plasminogen activator inhibitor</td>
</tr>
<tr>
<td>PAQLQ</td>
<td>Pediatric Asthma Quality of Life Questionnaire</td>
</tr>
<tr>
<td>PEF</td>
<td>Peak expiratory flow</td>
</tr>
<tr>
<td>PD_{15}</td>
<td>Provocation dose required to induce a drop in FEV1 of 15%</td>
</tr>
<tr>
<td>PDSS</td>
<td>Pediatric Daytime Sleepiness Scale</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>REM</td>
<td>Rapid eye movement</td>
</tr>
<tr>
<td>RV</td>
<td>Residual volume</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>Standard deviation score</td>
</tr>
<tr>
<td>Th</td>
<td>T-helper</td>
</tr>
<tr>
<td>TLC</td>
<td>Total lung capacity</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor-alpha</td>
</tr>
<tr>
<td>TST</td>
<td>Total sleep time</td>
</tr>
<tr>
<td>TTA</td>
<td>Total time awake</td>
</tr>
</tbody>
</table>
Synopsis

Obesity and asthma are the most common conditions affecting the paediatric population worldwide, with obesity being more prevalent in the population with asthma. Obesity in children with asthma is associated with increased asthma symptoms, increased number and severity of exacerbations, and increased use of medications, including inhaled corticosteroids. With the advent of obese asthma, occurring in parallel with Westernisation, the role of obesity and associated metabolic and lifestyle factors in the development and/or pathogenesis of asthma, and in asthma management, have been called into question. Although obese asthma has been described in the adult population as a distinct clinical phenotype, characterized by neutrophilic airway inflammation, reduced static lung function and corticosteroid resistance, there has been minimal research on obese asthma in the paediatric population.

The current thesis aims to characterise the inflammatory, physiological and clinical aspects of obese asthma in children; to understand the prevalence of risk factors for weight gain in children with asthma; and to investigate the feasibility and efficacy of dietary intervention to induce weight loss and improve asthma outcomes in paediatric obese asthma.

Chapter III presents the airway and systemic inflammatory profile, dynamic and static lung function, and clinical asthma outcomes in obese and non-obese children, with and without asthma. In this cross-sectional study, we found a poorer quality of life and reduced static lung function (expiratory reserve volume (ERV)) in obese asthmatic children. Sputum %eosinophils and the prevalence of eosinophilic asthma was lower in obese females compared to obese males, indicating that the female
gender may be associated with a different pattern of airway inflammation in obese asthma. This is important to asthma management and requires further investigation. However, the overall airway and systemic inflammatory profile did not differ between obese and non-obese asthmatic children.

In Chapter IV, the associations between lung function and body composition in children, with and without asthma, were explored. Body weight, fat mass and lean mass were inversely associated with static lung function (functional residual capacity (FRC) and ERV), suggesting that obesity, regardless of composition, is associated with reduced static lung function. Conversely, lean mass was positively associated with improvements in dynamic lung function. This study indicates that it is important to consider body composition as fat and lean mass, which both increase with obesity, may have differential effects on lung function. Chapter III and IV demonstrate that obesity is associated with lung deficits that are not detectable through routine spirometry. This suggests that in clinical practice static lung function needs to be routinely measured in obese asthmatic children.

In Chapter V, the presence of key modifiable risk factors for weight gain were compared in a cross-sectional study of non-obese children, with and without asthma, including sleep architecture, appetite and dietary intake, and physical and sedentary behaviour. Sleep latency was extended, and triglyceride levels were higher, in children with controlled asthma compared to non-asthmatic children. This study did not detect differences in plasma appetite hormone concentrations, food cravings, dietary intake or physical activity levels. However, in this group of asthmatic and non-asthmatic children, daytime sleepiness and reduced sleep duration were associated with adverse changes in plasma lipids, dietary patterns and sedentary
behaviour, which can potentially lead to positive energy balance and warrants further investigation.

In Chapter VI, the feasibility and efficacy of a ten week dietary intervention to induce acute weight loss in a group of obese children with asthma was demonstrated in a pilot randomised controlled trial. Dietary intervention induced statistically significant acute weight loss in asthmatic children, with improvements in asthma control and static lung function. This indicates that dietetic consultation is beneficial and should be integrated as part of the management of the obese child with asthma.

The research conducted as part of this thesis has contributed to the understanding of paediatric obese asthma; investigated the prevalence of key lifestyle risk factors for obesity in asthmatic and non-asthmatic children; and provided pilot data to support the efficacy of dietary-induced weight loss to improve asthma outcomes in obese asthmatic children.