Biogenesis of Plasma CD36+ Microparticles in Human Diabetes and the Metabolic Syndrome

Mohammad Jamil Alkhatatbeh

BSc in Pharmacy

&

MSc in Clinical Pharmacy

A thesis submitted in fulfilment
of the requirements for the degree of
Doctor of Philosophy (Experimental Pharmacology)

August 2012

Cancer Research Unit
School of Biomedical Sciences and Pharmacy,
University of Newcastle
Declaration

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library**, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.

15th August, 2012

Mohammad Alkhatatbeh

Date
Statement of Authorship

I hereby certify that the work embodied in this thesis contains a published paper (Chapter 4) of which I am the first and major contributing author of a joint publication. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution (see next page).

15th August, 2012

Mohammad Alkhatatbeh

Date
Endorsement of Authorship by the Supervisor

I attest that Research Higher Degree candidate Mohammad Alkhatatbeh contributed to
1) the conception and design of the research, 2) collection, analysis and interpretation of
research data and 3) drafting and revision of the major part of the work to contribute to
the interpretation of the publication entitled:

*The putative diabetic plasma marker, soluble CD36, is non-cleaved, non-soluble and
entirely associated with microparticles.*

Alkhatatbeh MJ, Mhaidat NM, Enjeti AK, Lincz LF, Thorne RF. J Thromb Haemost,

On behalf of all co-authors and co-supervisors,

Dr. Rick Thorne (primary supervisor) 15th August, 2012

Date
Copyright Permissions

All required copyright permissions are listed in Appendix 4.
Abstract

CD36 is a widely expressed cell surface receptor that binds lipoproteins and its function has been implicated in many complications of the metabolic syndrome. A cell-free form of CD36, soluble CD36 (sCD36), has been reported in human plasma and found to be elevated in obesity and diabetes and claimed to be a marker of insulin resistance. The nature and origin of the sCD36 has not been determined previously, although it has been postulated to be either a product of proteolytic cleavage or as an intact glycoprotein in the form of circulating microparticles (MPs) which are defined as small (0.1 - 1 µm in diameter) membranous microvesicles that can be specifically and selectively released from the cell membrane and retain many features of their cell of origin. MPs are present in the peripheral blood of normal healthy individuals but their numbers can increase dramatically in various pathological states, including type 2 diabetes and various vascular diseases. Given that MPs are enriched with bioactive proteins and nucleic acids, MPs bearing CD36 may not just be a marker of insulin resistance but may in fact contribute to disease pathogenesis. Thus the overarching hypothesis for this thesis is that plasma derived CD36 (sCD36) identifies a specific subset of MPs which contributes to the pathogenesis of type 2 diabetes and/or its complications.

The first objective of this thesis was to determine the nature of sCD36; in particular whether sCD36 is truly soluble or, as hypothesized, found as a component of circulating MPs. Biochemical experiments done on plasma of normal subjects revealed that the cell-free plasma CD36 was not associated with its lipoprotein ligands and was not a proteolytic fragment; rather it was associated with the plasma MP fraction suggesting that sCD36 is a product of circulating MPs. Flow cytometric and immunoblotting analyses of plasma from normal donors showed these MPs were derived mainly from platelets. Analysis of in vitro activated platelets also showed that CD36 was secreted in the form of MPs.

The second objective of this thesis was to further understand the potential role of CD36 in obesity and the pathogenesis of diabetes. The aim was to determine the levels and cellular sources of the CD36+MPs in patients with type 2 diabetes compared to normal lean and obese controls. Levels of CD36+MPs were found to correspond to approximately 50% of those of platelet derived MPs, were significantly higher in obese patients with type 2 diabetes compared to the obese controls (p<0.00001), and were primarily derived from mature erythrocytes (35.8 ± 14.6%). Plasma CD36 protein concentration measured by ELISA was positively correlated with CD36+MPs measured by flow cytometry but only weakly associated with the distribution of controls and patients with diabetes. Multivariate analysis confirmed that CD36+MP levels were a much better marker of diabetes than CD36 protein concentration.

The third objective of this thesis was determine if there was any pattern of elevated MP levels related to diabetic complications and medications. Analysis by self-reported
diabetic complications did not show significant differences in most of the MP subsets between patient subgroups except for the significant increase in % of CD36+/PS+MPs ([PS] phosphatidylserine; activation/apoptosis marker) in patients with microangiopathy and peripheral ulcer and the significant decrease in CD14+MPs (monocyte marker) and CD36+/CD41+MPs (platelet marker) in patients with reported nephropathy. Analysis by self-reported medications showed a significant increase in absolute numbers of CD36+/CD105+MPs (endothelial marker) and CD36+/CD45+MPs (leukocyte marker) in patients with diabetes taking sulfonylurea and a significant increase in % of CD36+/CD235a+MPs (erythrocyte marker) in patients taking metformin compared to those who were not. Total CD36+MP levels were not significantly associated with any of the self-reported diabetic complications and medications except for patients who were treated with calcium blockers.

The last objective of this thesis was to determine if CD36+MPs could be released from cells of organs exposed to diabetic conditions. To this end, in vitro models were developed to represent complications of type 2 diabetes including diabetic nephropathy and fatty liver disease. Treatment of cell lines using advanced glycosylation end products (AGEs) and palmitic acid (PA) induced cellular death and CD36+MP production from HK-2 cells (nephropathy model) and HepG2 cells (fatty liver model) under circumstances resembling those that occur in diabetic plasma. If similar processes occur in human liver and kidney, it will be expected that CD36+MPs could be produced from CD36 expressing tissues especially those which are involved in diabetes and its complications.

Collectively, this thesis establishes that the reported diabetic marker sCD36 in human plasma is entirely associated with circulating MPs (CD36+MPs). Interestingly, CD36+MP levels were found to be a better marker of diabetes than sCD36 protein concentration. The origin of circulating MPs could be easily determined as they also express antigens of their cellular source. CD36+MPs in patients with type 2 diabetes were mainly derived from mature erythrocytes but the underlying pathophysiology behind involvement of erythrocytes in diabetes requires further investigations. In addition, further investigations are needed to determine whether CD36+MPs could contribute as mediators of diabetes or if they are purely just biomarkers.
Acknowledgments

I would like to thank my Supervisor, Dr. Rick Thorne and all the staff and students at the Cancer Research Unit, School of Biomedical Science and Pharmacy. Thank you Dr. Rick for your instruction and guidance throughout all aspects of this project. Thank you also for being friend more than being supervisor and for your social support during the last three years when I was away from my home. I will never forget your positive effect on my life and I am very proud of your supervision throughout my candidature.

I would also like to thank my Co-supervisor, Dr. Lisa Lincz and all staff in the Hunter Haematology Research Group, Calvary Mater hospital. Thank you Dr. Lisa for your instruction and guidance and for your help in seeking human ethics for my project. Thank you for your time that you spent in the diabetic clinic looking for patients to participate in this project. Thank you also for teaching me how to analyse plasma microparticles and how to set the flow cytometer for this analysis. I would also like to thank you for doing the statistical analysis for this project and helping me to analyse the results. I appreciate following me up in writing each piece of this thesis and I will never forget the experience that I got while I was working under your supervision.

I have also to thank Prof. Gordon Burn for his experience and exceeding knowledge about CD36 and its biological functions. Thank you for your creative thoughts and for your help and support when I was writing my first manuscript and throughout the first two years of my candidature.

Finally, I would like to thank my family, especially my parents, brother, sisters and my wife. You have always supported me on every day during my candidature with unconditional love.

Mohammad Alkhatatbeh
Table of Contents

Declaration.. ii
Statement of Authorship... iii
Copyright Permissions.. iv
Abstract... vi
Acknowledgments .. viii
Table of Contents .. ix
List of Figures .. xv
List of Tables .. xviii
List of Abbreviations ... xix
List of Publications ... xxi

<table>
<thead>
<tr>
<th>List of Publications</th>
<th>xxxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal articles</td>
<td>xxi</td>
</tr>
<tr>
<td>Conference oral presentations</td>
<td>xxi</td>
</tr>
<tr>
<td>Conference poster presentations</td>
<td>xxi</td>
</tr>
</tbody>
</table>

1. Literature Review ... 1
 1.1 Metabolic syndrome ... 1
 1.1.1 Introduction .. 1
 1.1.2 Pathogenesis of the metabolic syndrome .. 4
 1.1.3 Clinical consequences of the metabolic syndrome 9
 1.2 Patho-physiological significance of CD36 in diabetes and its complications 19
 1.2.1 Introduction .. 19
 1.2.2 Tissue distribution and structure of CD36 .. 19
 1.2.3 Functions of CD36 .. 23
 1.2.4 Circulating plasma CD36 as a marker of insulin resistance and the metabolic syndrome ... 34
 1.3 Plasma-derived microparticles (MPs) ... 37
1.3.1 Introduction ... 37
1.3.2 MP formation .. 41
1.3.3 Plasma MPs and their functions ... 45
1.4 Summary and Aims ... 55

2. Materials and Methods ... 57

2.1 Chemicals and reagents ... 57
2.2 Common buffers and solutions ... 57
2.3 Determination of protein concentration .. 57
2.4 Protein electrophoresis .. 58
2.5 Western blotting .. 59
2.6 Blood collection for the biochemical experiments .. 61
2.7 Lipoprotein fractionation .. 61
2.8 Isolation and activation of platelets .. 62
2.9 Preparation of MPs from plasma and platelets using ultracentrifugation 62
2.10 Isolation of plasma MPs by size exclusion chromatography 63
2.11 Isolation of circulating CD36 by immunoprecipitation 63
2.12 Cleavage of N-linked glycosylated residues from CD36 64
2.13 Diabetes study cohort and sample collection .. 64
2.14 Labelling of mouse anti-human CD36 mAb (11H5) with DyLight-488 65
2.15 Analysis of MPs by flow cytometry ... 66
2.16 CD36 sandwich ELISA ... 67
2.17 Cell lines ... 68
2.18 Cell culture methods ... 69
2.19 Preparation of advanced glycation end products (AGEs) and free fatty acids
(FFAs) .. 70
2.20 Cell culture treatments ... 70
2.21 Oil Red O staining .. 71

3. Establishment of Plasma MP Detection by Flow Cytometry 72

3.1 Introduction ... 72
3.2 Instrument validation and gating strategy .. 73
3.3 Establishment of pre-analytical variables .. 76
3.3.1 Preparation of platelet free plasma .. 76
3.3.2 Differentiation between MP gate and platelet gate .. 80
3.3.3 Sample storage conditions and effect of repeated freeze-thaw cycles 86
3.4 Optimization of MP immunostaining techniques ... 88
 3.4.1 Standardised reaction conditions ... 88
 3.4.2 Antibody titration .. 88
 3.4.3 Multi-colour fluorescence immunostaining .. 92
 3.4.4 Stability of stained PFP samples ... 95
3.5 Enumeration of MPs ... 100
3.6 Discussion ... 101

4. The Putative Diabetic Plasma Marker, Soluble CD36, is Non-cleaved, Non-
soluble and Entirely Associated with MPs .. 104
 4.1 Introduction .. 104
 4.2 CD36 is detected in human plasma as a cell-free form 105
 4.3 Soluble CD36 (sCD36) is associated with circulating MPs isolated by size
 exclusion chromatography .. 107
 4.4 Soluble CD36 (sCD36) is not associated with plasma lipoproteins 109
 4.5 Soluble CD36 (sCD36) is a component of circulating MPs rather than being a
 proteolytic product .. 111
 4.6 Soluble CD36 (sCD36) released after platelet activation is associated only
 with MPs .. 114
 4.7 Discussion .. 117

5. The Origin of Circulating CD36 in Type 2 Diabetes .. 122
 5.1 Introduction .. 122
 5.2 Study design ... 124
 5.3 Data acquisition and interpretation .. 125
 5.4 Statistical analysis ... 127
 5.5 CD36+MPs are significantly higher in obese patients with diabetes compared
 to obese controls .. 128
 5.6 Increased CD36+MPs in obese patients with diabetes are mainly derived from
 mature erythrocytes .. 130
 5.7 Increased erythrocyte derived MPs in diabetes does not correlate with HbA1c
 ... 134
5.8 Plasma levels of CD36+MP are a better independent marker of diabetes than CD36 protein concentration ... 135
5.9 Discussion ... 138

6. Plasma MP Profiles in Type 2 Diabetes Complications and Medications 143

6.1 Introduction ... 143
6.2 Study design ... 144
6.3 Statistical analysis ... 145
6.4 Patient characteristics ... 145
6.5 Association between self-reported diabetic complications and patient characteristics, blood parameters and plasma MPs .. 147
6.6 Association between self-reported medications and patient characteristics, blood parameters and plasma MPs ... 150
6.7 Association between diabetic nephropathy and patient characteristics, blood parameters and plasma MPs ... 154
6.8 Discussion ... 158

7.1 Introduction ... 166
7.1.1 Fatty liver disease .. 167
7.1.2 Diabetic nephropathy .. 167
7.2 In vitro model of fatty liver disease ... 168
7.2.1 The saturated fatty acid (Palmitic acid; PA) induces cellular apoptosis in HepG2 cells whereas the unsaturated fatty acid (Oleic acid; OA) induces lipid accumulation ... 168
7.2.2 HepG2 cells generate CD36+MPs after treatment with palmitic acid (PA) ... 171
7.3 In vitro model of diabetic nephropathy ... 173
7.3.1 High glucose levels induce CD36 expression in HK-2 cells. 173
7.3.2 Induction of apoptotic cell death in HK-2 cells by AGEs and PA 175
7.3.3 HK-2 cells generate CD36+MPs after treatment with AGEs and PA 177
.. 178
7.4 Discussion ... 181
12.6 Statins ... 246
12.7 Fibrates ... 247
12.8 Beta blockers .. 248
12.9 ACE inhibitors .. 249
12.10 ARBs ... 250
12.11 Calcium blockers ... 251
12.12 Diuretics ... 252
12.13 Proton pump inhibitors (PPIs) 253

13. Appendix 4: Copyright permissions 254

13.1 Copyright permission for chapter 4 254
13.2 Copyright permission for Table 1.1 259
13.3 Copyright permission for Figure 1.2 266
13.4 Copyright permission for Figure 1.3 269
13.5 Copyright permission for Figure 1.4 275
13.6 Copyright permission for Figure 1.5 281
13.7 Copyright permission for Table 1.3, Table 1.4, Figure 1.6 and Figure 1.7 .. 282
List of Figures

Figure 1.1: Development of non alcoholic hepatic steatosis................................. 8
Figure 1.2: Pathophysiology of cardiovascular disease in the metabolic syndrome..... 13
Figure 1.3: Pathophysiology of hyperglycemia and increased circulating FFAs in type 2 diabetes.. 16
Figure 1.4: Schematic of CD36 glycoprotein... 22
Figure 1.5: Structure of cell-derived MPs... 39
Figure 1.6: Flippase, floppase and scramblase maintain phospholipid asymmetry in the plasma membrane ... 43
Figure 1.7: Mechanism of MP formation... 44
Figure 1.8: MPs and microvascular complications of diabetes......................... 49
Figure 3.1: Determination of MP gate on BD FACS Canto flow cytometer......... 75
Figure 3.2: Processing of blood samples to produce different plasma preparations..... 77
Figure 3.3: Platelet count per µl of different plasma preparations.......................... 79
Figure 3.4: Differentiation between MP gate and platelet gate detected by BD FACS Canto flow cytometer ... 82
Figure 3.5: Comparison between CD36 and CD41 stained events detected by flow cytometry in different plasma preparations... 85
Figure 3.6: Effect of repeated freezing-thawing cycles on MP analysis............... 87
Figure 3.7: Determination of antibody amounts needed for maximum MP staining in PFP.. 91
Figure 3.8: Flow cytometric detection of different combinations of fluorophore-labelled antibodies coupled to Dynabeads. ...94

Figure 3.9: Effect of temperature and run time on MP staining in PFP.........................97

Figure 3.10: Effect of Calcium (Ca^{2+}) in Annexin V binding buffer on CD36 staining of MPs in PFP...99

Figure 4.1: Detection of cell-free form of CD36 in human plasma by ELISA.............106

Figure 4.2: Plasma sCD36 is associated with circulating MPs isolated by size exclusion chromatography. ...108

Figure 4.3: Isolated plasma lipoproteins show no association with soluble CD36.....110

Figure 4.4: Plasma sCD36 is a component of circulating MPs rather than being a proteolytic product...113

Figure 4.5: sCD36 released after platelet activation is associated only with MPs......115

Figure 4.6: Activation of platelets results in increased production of CD36+MPs116

Figure 4.7: Determination of the source of CD36+MPs in normal subjects............120

Figure 5.1: Levels of MP subsets in obese compared to lean controls, and obese diabetics compared to obese controls...129

Figure 5.2: Percentage of CD36+MP derived from specific MP subsets in obese compared to lean controls, and obese diabetics compared to obese controls.131

Figure 5.3: The elevated CD36+/CD235a+MPs in type 2 diabetes are entirely derived from mature erythrocytes...133

Figure 5.4: Scattergraphs showing lack of correlation between HbA1c plasma concentrations and erythrocyte derived MPs in obese patients with diabetes........134

Figure 5.5: Plasma levels of CD36 protein in obese compared to lean controls, and obese patients with diabetes compared to obese controls.136
Figure 5.6: Quartiles of plasma CD36 protein concentration measured by ELISA compared to numbers of circulating CD36+MPs measured by flow cytometry in lean and obese controls and obese patients with diabetes. ...137

Figure 6.1: Association between CD36+/CD105+MP and CD36+/CD45+MP levels and sulfonylurea. .. 153

Figure 7.1: ORO staining of HepG2 cells after 24 h treatment with PA or OA.170

Figure 7.2: Detection of MP production from HepG2 cells...172

Figure 7.3: CD36 expression in HK-2 cells increases in response to glucose..........174

Figure 7.4: Effect of 24 h treatment with AGEs and PA on HK-2 cells grown in low or high glucose conditions...176

Figure 7.5: Flow cytometric detection of MP production from HK-2 cells............179

Figure 7.6: Western blotting of the MP fraction from HK-2 cells............................180
List of Tables

Table 1.1: Characteristics of the WHO, EGIR, NCEP ATP III, and IDF definitions of the Metabolic Syndrome. ..3

Table 1.2: Signaling pathways mediated by CD36 glycoprotein. ..24

Table 1.3: Markers of circulating MPs depending on their origin.40

Table 1.4: Association of plasma MP alterations in clinical conditions.53

Table 2.1: Western blotting antibodies ...60

Table 3.1: Antibodies used for MP staining ..92

Table 5.1: Demographic information and blood parameters for age and gender matched study participants. ..126

Table 6.1: Demographic information and blood parameters for the study participants. ...146

Table 6.2: Analysis by self-reported diabetic complications ...149

Table 6.3: Analysis by self-reported medications .. 152

Table 6.4: Analysis by urine albumin and albumin/creatinine levels154

Table 6.5: Correlations analysis between urine albumin and albumin/creatinine levels and different patient variables ...155
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>number</td>
</tr>
<tr>
<td>%CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>A</td>
<td>adenosine</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>Ca^+2</td>
<td>calcium ion</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>COX</td>
<td>cyclooxygenase</td>
</tr>
<tr>
<td>ddH2O</td>
<td>deionised and distilled water</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra-acetic acid (disodium)</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FBS</td>
<td>foetal bovine serum</td>
</tr>
<tr>
<td>FFA</td>
<td>free fatty acid</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity (9.8 m.s^{-2})</td>
</tr>
<tr>
<td>g/l</td>
<td>gram/litre</td>
</tr>
<tr>
<td>gp</td>
<td>glycoprotein</td>
</tr>
<tr>
<td>HbA1c</td>
<td>glycated haemoglobin</td>
</tr>
<tr>
<td>HMG-CoA</td>
<td>3-hydroxy-3-methyl-glutaryl-CoA</td>
</tr>
<tr>
<td>H2O2</td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>KCl</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>KDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>LDS</td>
<td>lithium dodecyl sulphate</td>
</tr>
<tr>
<td>m^2</td>
<td>meter square</td>
</tr>
<tr>
<td>mAb</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>Mg^"2"</td>
<td>magnesium ion</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MgCl2</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>µL, mL, L</td>
<td>microlitre, millilitre, litre</td>
</tr>
<tr>
<td>µM, mM, M</td>
<td>micromolar, millimolar, molar</td>
</tr>
<tr>
<td>µm</td>
<td>micrometer</td>
</tr>
<tr>
<td>mmol/l</td>
<td>millimole/litre</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimetre of mercury</td>
</tr>
<tr>
<td>mg/g</td>
<td>milligram/gram</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>miRNA</td>
<td>micrornucleic acid</td>
</tr>
</tbody>
</table>
Mr molecular weight
nm nanometer
O oxygen
N nitrogen
NaCl sodium chloride
NaHCO₃ sodium hydrogencarbonate
NaH₂PO₄ sodium dihydrogen phosphate
PAGE polyacrylamide gel electrophoresis
pAb polyclonal antibody
PBS phosphate buffered saline
pH potential hydrogen
PMA phorbol 12-myristate 13-acetate
PTA1 platelet and T cell antigen 1
RNA ribonucleic acid
PNGase-F peptide N-glycosidase F
r correlation coefficient
RT room temperature
SDS sodium dodecyl sulphate
T thyonine
TBST tris buffered saline with tween 20
Tris (2-amino-2-hydroxy-(hydroxymethyl)-propane-1, diol, (tris))
U unit
U.V. ultra violet
V volt
vs. versus
v/v, w/v volume per volume, weight per volume
List of Publications

Journal articles

Conference oral presentations

Conference poster presentations
