PERFORMANCE OF CERVICAL SPINE
MOBILISATION

Suzanne Nicole Jordan Snodgrass

BSc (Phys Ther), ATC, MMedSc (Physio)

Thesis submitted for the degree of PhD (Physiotherapy)
The University of Newcastle, Australia
May 2008
STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

ACKNOWLEDGEMENT OF AUTHORSHIP

I hereby certify that the work embodied in this thesis is the result of original research, the greater part of which was completed subsequent to admission to candidature for the degree.

Signature: ______________________________________ Date: ______
ACKNOWLEDGEMENTS

The author would like to acknowledge the assistance of the following people:

Research higher degree supervisors, for guidance and critical discussion:
A/Prof Darren Rivett, Prof Val Robertson, Dr Elizabeth Stojanovski.

Faculty of Health Workshop, for fabrication and design of the instrumented table (Chapter 3) and stiffness assessment machine (Chapter 4): Trevor White, Dean Jeffs, Darren Gorton.

A/Prof Colin Waters for assistance in the analysis of the reliability of the instrumented table (Chapter 3), and for writing the IDL software program for analysing spinal stiffness data (Chapter 4, Appendix 3.1 and 3.2).

Benjamin Duck for writing the Labview program for real-time feedback (Chapter 10, Appendix 3.3, CD-ROM).

Helen Warren-Forward, physicist, for review of technical terminology in Chapter 2.

Madeleine Elsegood, research assistant, for assistance with data entry (Chapters 6 and 7).

Brad Campbell and Carole James for assistance in coding comments from mobilised subjects (Chapter 9).

The University of Sydney School of Physiotherapy for access to their instrumented treatment table during the planning and design phases for the instrumented table reported in this thesis.

The physiotherapists, students and mobilised subjects who volunteered their time to participate in the studies.
TABLE OF CONTENTS

STATEMENT OF ORIGINALITY .. II
ACKNOWLEDGEMENT OF AUTHORSHIP ... II
ACKNOWLEDGEMENTS ... III
TABLE OF CONTENTS ... IV
LIST OF TABLES .. XI
LIST OF FIGURES .. XIV
ABSTRACT .. XVII
PUBLICATIONS ... XIX
CONFERENCES PRESENTATIONS ... XXI

CHAPTER 1. INTRODUCTION ... 1

1.1. BACKGROUND ... 1
 1.1.1 Cervical spine mobilisation treatment ... 1
 1.1.2 Consistency of cervical mobilisation force parameters 3
 1.1.3 Learning cervical mobilisation ... 4

1.2. OBJECTIVES .. 5
 1.2.1 Equipment development .. 5

 1.2.2 Quantification of cervical mobilisation techniques 6

 1.2.3 Use of real-time feedback for cervical mobilisation training 8

1.3. SUMMARY ... 9

CHAPTER 2. LITERATURE REVIEW ... 10

2.1. INTRODUCTION ... 10
2.2. METHODS .. 15
2.3. RESULTS ... 16
2.4. DISCUSSION .. 19

 2.4.1 Quantification of mobilisation forces ... 19
 2.4.2 Magnitude of force .. 22
 2.4.3 Frequency of oscillation .. 24
 2.4.4 Amplitude of force .. 25
 2.4.5 Displacement .. 26
 2.4.6 Amplitude of displacement ... 31
 2.4.7 Issues when comparing studies ... 32

 Different methods of force measurement .. 33
 Therapist standing on a forceplate .. 33
 Table on a forceplate .. 34
 Flexible force transducer .. 34
 Instrumented treatment table ... 35
 Devices simulating the spine .. 37
CHAPTER 3. EQUIPMENT DEVELOPMENT: INSTRUMENTED TREATMENT TABLE .. 51

3.1. INTRODUCTION ... 51
3.2. METHODS ... 52
 3.2.1 Equipment design ... 52
 3.2.2 Calibration ... 57
 3.2.3 Measurement consistency ... 58
 3.2.4 Data analysis .. 62
3.3. RESULTS ... 63
3.4. DISCUSSION ... 69
3.5. CONCLUSION .. 75

CHAPTER 4. EQUIPMENT DEVELOPMENT: STIFFNESS ASSESSMENT MACHINE 77

4.1. INTRODUCTION ... 77
4.2. METHODS ... 78
 4.2.1 Equipment .. 78
 4.2.2 Data collection .. 82
 Reliability testing .. 82
 Cervical spine stiffness measurement ... 83
 4.2.3 Analysis .. 87
 Reliability testing .. 87
 Determining the linear region of the cervical spine stiffness curve 87
 Stiffness calculation .. 89
4.3. RESULTS ... 89
 4.3.1 Reliability testing ... 89
 4.3.2 Determining the linear region of the cervical spine stiffness curve 90
 4.3.3 Stiffness calculation ... 91
4.4. DISCUSSION ... 94
4.5. CONCLUSION .. 98

CHAPTER 5. PILOT STUDY .. 99

5.1. INTRODUCTION ... 99
5.2. METHODS ... 99
 5.2.1 Equipment .. 99
 5.2.2 Mobilisation force measurement .. 99
5.3. RESULTS ... 103
5.4. DISCUSSION ... 108
 5.4.1 Comparisons with reported mean peak mobilisation forces ... 108
 5.4.2 Comparisons with reported peak manipulation forces ... 110
 5.4.3 Force amplitude .. 111
 5.4.4 Oscillation frequency ... 112

V
Factors common to therapists and students ... 182
Strength of associations between force, gender and stiffness 182
Thumb pain: contrasting factor for therapists and students 184
Comparisons with previous studies ... 184

8.5. CONCLUSION ... 185

CHAPTER 9. ANALYSIS OF COMMENTS MADE BY MOBILISED SUBJECTS ... 186

9.1. INTRODUCTION .. 186
9.2. METHODS ... 187
 9.2.1 Comfort rating scale ... 187
 9.2.2 Written comments ... 188
9.3. RESULTS .. 190
 9.3.1 Comfort rating scale ... 190
 9.3.2 Written comments ... 193
9.4. DISCUSSION .. 198
 9.4.1 Comfort and manual forces ... 198
 9.4.2 Subject perceptions about force magnitude .. 199
 9.4.3 Subject perceptions about mobilisation skills 200
 9.4.4 Limitations .. 201
9.5. CONCLUSIONS .. 202

CHAPTER 10. EQUIPMENT DEVELOPMENT: SOFTWARE FOR REAL-TIME FEEDBACK ON MANUAL FORCES .. 203

10.1. INTRODUCTION ... 203
 10.1.1 Motor learning .. 204
 Frequency of feedback ... 204
 Whole versus part practice of a task ... 205
 External feedback cues .. 205
 10.1.2 Feedback software for cervical mobilisation 206
10.2. METHODS .. 206
 10.2.1 Development .. 206
 10.2.2 Description and capability ... 208
 10.2.3 Testing .. 217
 Accuracy .. 217
 Application .. 217
10.3. RESULTS .. 218
 10.3.1 Development challenges ... 218
 CPU overload .. 218
 Calculating terminal feedback for oscillation frequency 219
 10.3.2 Testing .. 220
 Accuracy .. 220
 Application of the software ... 220
10.4. DISCUSSION .. 222
 10.4.1 Types of feedback for learning manual therapy 223
 10.4.2 Software design ... 223
10.5. CONCLUSION .. 225

CHAPTER 11. IMPROVING SKILLS IN CERVICAL MOBILISATION USING FEEDBACK .. 226

11.1. INTRODUCTION ... 226
 11.1.1 Objective feedback for learning manual therapy skills 226
 11.1.2 Amount and timing of feedback ... 230
 11.1.3 Amount and sequence of practice .. 231
 11.1.4 Study objectives ... 233
3.2. IDL PROGRAM FOR CALCULATING THE SPINAL STIFFNESS OF A SPECIFIED PORTION
OF THE FORCE-DISPLACEMENT CURVE .. 381

3.3. LABVIEW PROGRAM FOR PROVIDING REAL-TIME FEEDBACK DURING CERVICAL
MOBILISATION... 383

APPENDIX 4. ADDITIONAL STATISTICAL CALCULATIONS FOR FORCES
APPLIED BY PHYSIOTHERAPISTS ... 384

4.1. SPECIFIC COMPARISONS OF MOBILISATION TECHNIQUES AND GRADES
(Physiotherapists, Chapter 6) ... 384

4.1.1 Mean peak force ... 384
 Comparison of mobilisation grades ... 384
 Comparison of techniques (C2 central, C2 unilateral, C7 central and C7
 unilateral) ... 387
 Comparison of central versus unilateral techniques 390
 Comparison of forces applied to the upper versus lower cervical spine... 391

4.1.2 Force amplitude ... 392
 Comparison of mobilisation grades ... 392
 Comparison of techniques (C2 central, C2 unilateral, C7 central and C7
 unilateral) ... 395
 Comparison of central versus unilateral techniques 398
 Comparison of forces applied to the upper versus lower cervical spine... 399

4.1.3 Oscillation frequency .. 400
 Comparison of mobilisation grades ... 400
 Comparison of techniques (C2 central, C2 unilateral, C7 central and C7
 unilateral) ... 401
 Comparison of central versus unilateral techniques 402
 Comparison of forces applied to the upper versus lower cervical spine... 402

4.2. UNIVARIATE REGRESSIONS (Physiotherapists, Chapter 6) 403

4.2.1 Mean peak force ... 405

4.2.2 Force amplitude ... 408

4.2.3 Oscillation frequency .. 411

4.3. STATISTICS FOR FINAL REGRESSION MODELS (Physiotherapists, Chapter 6)....

4.3.1 Mean peak force ... 412

4.3.2 Force amplitude ... 415

4.3.3 Oscillation frequency .. 418

4.4. DETAILED SUMMARY OF STATISTICS FOR ALL FACTORS SIGNIFICANTLY ASSOCIATED
WITH MANUAL FORCE (FINAL MODELS, PHYSIOTHERAPISTS, CHAPTER 6) 419

APPENDIX 5. ADDITIONAL STATISTICAL CALCULATIONS FOR FORCES
APPLIED BY STUDENTS .. 423

5.1. SPECIFIC COMPARISONS OF MOBILISATION TECHNIQUES AND GRADES (Students,
Chapter 7) ... 423

5.1.1 Mean peak force ... 423
 Comparison of mobilisation grades ... 423
 Comparison of techniques (C2 central, C2 unilateral, C7 central and C7
 unilateral) ... 426
 Comparison of central versus unilateral techniques 429
 Comparison of forces applied to the upper versus lower cervical spine... 430

5.1.2 Force amplitude ... 431
 Comparison of mobilisation grades ... 431
 Comparison of techniques (C2 central, C2 unilateral, C7 central and C7
 unilateral) ... 434
 Comparison of central versus unilateral techniques 437
 Comparison of forces applied to the upper versus lower cervical spine... 438

5.1.3 Oscillation frequency .. 439
LIST OF TABLES

Table 2.1.	Definitions of the grades of mobilisation as described by Maitland et al. (2005)	13
Table 2.2.	Magnitude of forces recorded during posterior-to-anterior mobilisations of the lumbar spine	17
Table 2.3.	Magnitude of forces recorded during posterior-to-anterior mobilisations of the cervical and thoracic spines	18
Table 2.4.	Magnitude of forces recorded during posterior-to-anterior mobilisations on simulated spines (artificial devices)	19
Table 2.5.	Factors that affect spinal stiffness	44
Table 2.6.	Factors with some evidence that they affect manual force parameters	47
Table 3.1.	Accuracy (absolute error in N) of forces measured by the instrumented treatment table	65
Table 3.2.	Reliability of force values recorded by the instrumented treatment table	69
Table 4.1.	Mean stiffness coefficient K for the cervical spine	92
Table 4.2	Description of subjects	92
Table 4.3	Stiffness coefficient K (N/mm) at C2 and C7	93
Table 5.1.	Selection of mobilisation grade definitions provided for therapists performing mobilisation	101
Table 5.2.	Description of physiotherapist participants (n=10)	104
Table 5.3.	Repeatability of cervical mobilisation forces	105
Table 5.4.	Group means (SD) for mean peak force (N), force amplitude (N), and oscillation frequency (Hz) for each grade of each technique	105
Table 6.1.	Description of physiotherapist participants (n = 116)	127
Table 6.2.	Description of asymptomatic mobilised subjects (n = 35)	127
Table 6.3.	Average mean peak force applied by physiotherapists (n = 116)	128
Table 6.4. Average force amplitude and oscillation frequency applied by physiotherapists (n = 116). .. 129		
Table 6.5. Inter- and intra-therapist reliability of cervical mobilisation force applications (n = 116). ... 134		
Table 6.6. Categories of unique mobilisation techniques and grades used for linear regression analysis. ... 135		
Table 6.7. Physiotherapist and asymptomatic mobilised subject characteristics associated with manual force parameters........ 136		
Table 7.1. Description of student participants (n = 120). 152		
Table 7.2. Description of asymptomatic mobilised subjects (n = 32). 152		
Table 7.3. Average mean peak cervical mobilisation forces (N) applied by physiotherapy students (n = 120). ... 153		
Table 7.4. Average force amplitudes (N) and oscillation frequencies (Hz) applied by physiotherapy students (n=120). 154		
Table 7.5. Inter- and intra-student reliability of cervical mobilisation force applications by students (n = 120). ... 159		
Table 7.6. Categories of unique mobilisation techniques and grades used for linear regression analysis. ... 160		
Table 7.7. Selected* student and asymptomatic mobilised subject characteristics associated with manual force parameters........... 161		
Table 8.1. Comparison of physiotherapist (n = 116) and student (n = 120) participant samples (A, continuous variables; B, categorical variables). ... 170		
Table 8.2. Comparison of asymptomatic subjects mobilised by either physiotherapists or students (A, continuous variables; B, categorical variables). ... 171		
Table 8.3. Significant differences in mean peak force (N) between physiotherapists and students. ... 173		
Table 8.4. Significant differences in force amplitude (N) between physiotherapists and students. ... 174		
Table 8.5. Significant differences in oscillation frequency (Hz) between physiotherapists and students. ... 174		
Table 8.6. Summary of factors associated with manual force applied by physiotherapists and students. ... 176		
Table 9.1.	Themes and categories used to group mobilised subject comments for analysis. ..189	
Table 9.2.	Descriptive statistics for VAS comfort scale for subjects mobilised by physiotherapists (n = 116) and students (n = 120).190	
Table 9.3.	Significant associations between VAS comfort rating and vertical mean peak force and force amplitude for subjects mobilised by physiotherapists. ...191	
Table 9.4.	Significant associations between VAS comfort rating and vertical mean peak force and force amplitude for subjects mobilised by students. ..192	
Table 9.5.	Reliability of categorisation of mobilised subject comments by three independent raters (n = 20). ..193	
Table 9.6.	Comments from subjects mobilised by physiotherapists.194	
Table 9.7.	Comments from subjects mobilised by students.194	
Table 9.8.	Significant associations between vertical mean peak force and comments from subjects mobilised by physiotherapists.195	
Table 9.9.	Significant associations between vertical mean peak force and comments from subjects mobilised by students.196	
Table 11.1.	Summary of studies investigating the effects of feedback on manual therapy skills. ..228	
Table 11.2.	Differences between student and expert forces after Session 1 practice. ...239	
Table 11.3.	Differences between student and expert forces one week after practice. ...242	
Table 11.4.	Inter-student repeatability of vertical mean peak force (feedback group). ...245	
LIST OF FIGURES

Figure 2.1. A. Pisiform grip during PA mobilisation of the lumbar spine. B. Thumb grip during PA mobilisation of the cervical spine..............13

Figure 2.2. Typical representation of a posterior-to-anterior mobilisation with respect to force (a) and displacement (b).21

Figure 2.3. Typical force-displacement curve for spinal stiffness..............29

Figure 3.1. Schematic of the instrumented treatment table..........................53

Figure 3.2. Experimental set-up of the instrumented treatment table........54

Figure 3.3. Technical drawings of the instrumented treatment table........55

Figure 3.4. Plot of recorded vertical forces against known weight values.....66

Figure 3.5. Plot of recorded caudad-cephalad forces against known weight values. ..67

Figure 3.6. Plot of recorded mediolateral forces against known weight values. ..68

Figure 3.7. Force-time curves for a posteroanterior cervical mobilisation applied to the right articular process of C7...............................73

Figure 4.1. Cervical spine stiffness assessment device positioned for C7 testing. ..79

Figure 4.2. Subject positioned for stiffness testing with the cervical spine in neutral and the indenter probe on the spinous process of C7......85

Figure 4.3. Typical force-displacement graph illustrating five cycles of applied force to C7. ..86

Figure 5.1. Vertical mean peak cervical mobilisation forces (± 1 SD) for each grade of each technique (n = 10)..106

Figure 5.2. Mean vertical cervical mobilisation force amplitude (± 1 SD) for each grade of each technique (n = 10).106

Figure 5.3. Mean cervical mobilisation oscillation frequency (± 1 SD) for each grade of each technique (n = 10).107

Figure 6.1. Vertical mean peak mobilisation forces (95% CI) applied by physiotherapists (n = 116) for each technique and grade.130

Figure 6.2. Caudad-cephalad mean peak mobilisation forces (95% CI) applied by physiotherapists (n = 116) for each technique and grade.130
Figure 6.3. Mediolateral mean peak mobilisation forces (95% CI) applied by physiotherapists (n = 116) for each technique and grade.131

Figure 6.4. Resultant mean peak mobilisation forces (95% CI) applied by physiotherapists (n = 116) for each technique and grade.131

Figure 6.5. Vertical mean force amplitudes applied by physiotherapists (n = 116) for each grade (all techniques combined). ...132

Figure 6.6. Mean oscillation frequency (95% CI) applied by physiotherapists (n = 116) for each mobilisation grade (all techniques combined). ...133

Figure 7.1. Vertical mean peak cervical mobilisation forces (95% CI) applied by students (n = 120) for each technique and grade................155

Figure 7.2. Caudad-cephalad mean peak cervical mobilisation forces (95% CI) applied by students (n = 120) for each technique and grade. ...155

Figure 7.3. Mediolateral mean peak cervical mobilisation forces (95% CI) applied by students (n = 120) for each technique and grade.156

Figure 7.4. Resultant mean peak cervical mobilisation forces (95% CI) applied by students (n = 120) for each technique and grade................156

Figure 7.5. Vertical mean force amplitudes applied by students (n = 120) for each grade (all techniques combined). ...157

Figure 7.6. Mean oscillation frequency (95% CI) applied by students (n = 120) for each mobilisation grade (all techniques combined).158

Figure 8.1. Comparison of student and physiotherapist cervical mobilisation forces. ..172

Figure 10.1. Display panel for real-time feedback...210

Figure 10.2. Configuration panel for setting force and oscillation frequency targets. ..213

Figure 10.3. Terminal feedback pop-up window. ..215

Figure 10.4. Sample html file displaying terminal feedback.216

Figure 11.1. Experimental design. ...236

Figure 11.2. Feedback and control groups after Session 1 practice (all grades). ..240

Figure 11.3. Feedback and control groups after Session 1 practice (by grade). ..241
Figure 11.4. Feedback and controls groups one week after practice (all grades)..243

Figure 11.5. Feedback and controls groups one week after practice (by grade). ..244

Figure 11.6. Improvement in applied force for outliers. ..247
ABSTRACT

Background and Purpose

Physiotherapists commonly use cervical mobilisation to treat neck pain and headaches. Ensuring similar amounts of mobilisation force are applied by different therapists is a necessary first step in establishing optimal parameters for achieving patient outcomes. A series of studies was designed to quantify cervical mobilisation forces applied by physiotherapists and students, explain any differences identified in applied forces, and determine if real-time objective feedback improves consistency in performance of cervical mobilisation techniques.

Methods

To quantify cervical mobilisation techniques, the forces applied by physiotherapists (n = 116) and undergraduate physiotherapy students (n = 120) were recorded using an instrumented treatment table. Each participant mobilised the C2 and C7 vertebrae of one asymptomatic subject using four grades of mobilisation, with one spinal level repeated after 20 minutes. Factors potentially associated with the applied forces, including spinal stiffness, were investigated.

To investigate the effects of real-time objective feedback on cervical mobilisation forces, visual targets based on force data recorded from an expert physiotherapist mobilising 21 asymptomatic subjects were provided to 50 students. They each mobilised one of these 21 subjects on two occasions. Students’ forces were recorded before and after practising mobilisations with real-time visual feedback of forces (experimental group) or without (control).
Results

Cervical mobilisation forces varied between individuals (ICC [2,1], therapist vertical mean peak force, 0.32, 95% CI 0.20 to 0.53), but intra-therapist repeatability was high (0.93, 95% CI 0.92 to 0.94). The highest resultant mean peak force was applied centrally on C7 by therapists (91.8 N, 95% CI 83.4 to 100.2), with students generally using lower forces. For both therapists and students, higher forces were associated with male gender (therapist, student or mobilised subject), and lower forces with greater C2 spinal stiffness in the mobilised subject.

Students who received real-time feedback applied forces that were more similar to the expert’s peak forces (median difference 4.0 N, IQR 1.9 to 7.7) than did the controls (14.3 N, IQR 6.2 to 26.2, p < 0.001), and this difference was maintained one week later.

Conclusions

The quantification of cervical mobilisation forces and explanations of differences in forces, together with the new technology developed, provide objective data about cervical mobilisation techniques, making effective feedback on performance possible. This will support strategies to improve consistency of mobilisation forces between therapists, as well as students. In turn, this approach provides the basis for future research to determine the mobilisation parameters that are optimal for treating a range of cervical spine disorders.
The following publications were a direct result of the work completed in this thesis:

(basis for Chapter 2, copy in Appendix 1.1)

(basis for Chapter 3, copy in Appendix 1.2)

(basis for Chapter 4, copy in Appendix 1.3)

(basis for Chapter 5, copy in Appendix 1.4)
Snodgrass SJ, Rivett DA, Robertson VJ, Stojanovski, E. Forces applied to the cervical spine during posteroanterior mobilization (currently under review).

(basis for Chapter 6, copy in Appendix 1.5)
CONFERENCE PRESENTATIONS

The following conference presentations were a direct result of the work completed in this thesis:

