An Equilibrium Study of Carbamate Formation Relevant to Post Combustion Capture of CO₂

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the School of Environmental and Life Sciences, Chemistry University of Newcastle by

Debra Fernandes, M.Sc (Chem.)

April, 2012

School of Environmental and Life Sciences, Chemistry University of Newcastle Callaghan NSW 2308 Australia
Author’s Declaration

I hereby certify that the work embodied in this thesis is the result of original research and has not been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due references has been made in the text.

Signature & Date

Debra Fernandes
Thesis by publication

Acknowledgement of Authorship

I hereby certify that this thesis is in a form of series of published papers of which I am the lead/co-author. I have included as part of the thesis a written statement from each co-author, endorsed by the Faculty of Science and Information Technology, Assistant Dean (Research Training), attesting to my contribution to the publications/scholarly work.

Signature & Date

Debra Fernandes
Acknowledgements

There have been so many people who have helped me through all these years for making my PhD experience a memorable one. Naming every individual is a tough task; however I would like to thank a few people who have been the key influence in this journey.

It is difficult to overstate my gratitude to my Ph.D. supervisors: Professor Marcel Maeder and Dr Robert Burns for their tremendous guidance, sound advice, encouragement and support through my project. This has been an invaluable contribution to my life and to my learning, without them I would have been lost in the tide of amines and CO₂ absorption data.

Further thanks go to Prof. Geoffrey Lawrance, Dr. Ian van Altena, Dr. Monica Rossignoli, Dr. Nichola McCann, Dr. Xiaoguang Wang and Dr. Graeme Puxty for all their encouragement and endless wealth of knowledge and ideas, technical support, proof reading and advice in nuclear magnetic resonance spectroscopy.

I also wish to thank the laboratory personal and the administration staff of the Department of Chemistry for their generous helping hand, words of encouragement and support throughout my project.

Particular thanks must also go to all my fellow postgraduates; Duong, Yaser, Will, Kylie, Hanadi, Hanki, Wahyu, Purnama, Dianna, Mohamed, Ahmed, Anang, and Azrin with whom I have shared great life experiences in the labs as well as outdoors, in particular, the bbq’s, and also thanks for putting up with my occasional whinging. *I wish you all the best in your thesis.*

Massive thanks goes to Sheena (sissy), Benju (benzo00), Rebecca (Bec), Duong (Duongy/Dong), Jade (Jedo), Gajj (Gajjy/Pavam), Ahmed, Sahi, James (Bear), Sandy, Ghufran (Ghufrina), Arslan (Azozobaba), Vinal, Hussain, Hassan, Yaser (Easer) and Diego for your contribution and influence in my life particularly; for putting up with my occasional tantrums, traumas, acting to be great listeners, cooking, parties, calling and
texting me a million times just to check on my wellbeing, driving me for shopping and workplace. I thank all of you for the wonderful times and memories, which are locked in my mind forever and will be for always no matter where my life journey will take me. ‘Each friend represents a world in us, a world possibly not born until they arrive, and it is only by this meeting that a new world is born’ I wish you all a happy and prosperous life

I would also like to thank the University Of Newcastle, Australia and the Tom Farrell Institute for giving me an opportunity to peruse my dreams and for all the financial support throughout my PhD. Without this support I would have never embarked on this journey of a life time filled with great experience and a wonderful outcome.

I have been very fortunate to have been given the opportunity of travelling in Australia and Europe for conferences and in particular, undertaking a project at the University of Barcelona, Spain under the supervision of Prof. Manuel Martinez. I would like to thank him for his kindness, hospitality, encouragement and particularly for being calm, positive and patient especially when the instrument decided not to work 😊

Finally, I thank the Lord God Almighty for the strength and all the blessings, especially for the blessing of a wonderful family. My dad-Rubiano, mom-Succorina, brother-Darryl and sister-Deslyna have been the greatest support in my entire life and through this rocky road journey of PhD. Your faith and constant encouragement has helped me peruse my dream. Love you always!!!
Dedication

This thesis is dedicated to my family
Publications and Conferences resulting from my project

Papers in preparation

8) **Fernandes, D.,** Conway, W., Wang, X., Burns, R., Lawrance, G., Puxty, G., Maeder, M., *The activity of the diamine “piperazine” and the formation of carbamate(s) from the reaction(s) with CO$_2$(aq) in aqueous solution at 25.0 °C for post combustion capture processes.* **2012, (Draft in preparation).**

Conference Oral-Presentations

1) **Debra Fernandes** – Interaction of piperazine with CO$_2$(aq) in post combustion capture, *International Conference on Carbon Reduction Technologies*, Poland, September **2011.**

2) **Debra Fernandes** – Amine Protonation and Implications for the Selection of Amines for PCC Applications, *9th Post Combustion Capture Day*, CSIRO-Melbourne, December **2011.**
Table of Contents

Author’s Declaration i
Acknowledgement of authorship ii
Acknowledgements iii
Dedication v
Publications & conferences resulting from my project vi
Table of Contents viii
List of figures & tables xi
Abbreviations xiii
Abstract xiv

1. Introduction 1
 1.1 Greenhouse effect 1
 1.2 Effects of global warming 3
 1.3 Climate change actions 3
 1.4 Carbon capture and storage (CCS) 4
 1.4.1 Capture 5
 1.4.2 Transport 5
 1.4.3 Storage 5
 1.5 CCS technology 6
 1.5.1 Pre-combustion capture 7
 1.5.2 Oxy-fuel combustion capture 7
 1.5.3 Post-combustion capture (PCC) 8
 1.5.4 Overview of the three technologies 8
 1.6 Post Combustion Capture in detail 9
 1.7 Current understanding of PCC 13
 1.7.1 Literature review – reaction rate and carbamate formation 15
 1.7.1.1 Physical approach 15
 a) Zwitterion formation 15
 b) A ter-molecular mechanism 16
 1.7.1.2 Chemical approach – direct reactions 17
 a) Interaction of CO₂ with H₂O/OH⁻ 18
 b) Interaction of CO₂ with amine 19
3. **Publications**

 Paper 1 77
 Paper 2 87
 Paper 3 93
 Paper 4 103
 Paper 5 112
 Paper 6 122
 Paper 7 127
 Paper 8 135
 Paper 9 153

4. **Conclusion**
List of figures and tables

Chapter 1: Introduction

Figure 1.1: Anthropogenic GHG emissions in terms of CO₂ in 2004
Figure 1.2: Atmospheric CO₂ concentration (ppm) recorded at Mauna Loa Observatory
Figure 1.3: Schematic diagram of possible CCS systems. The figure shows the sources for which CCS might be relevant, as well as CO₂ transport and storage options
Table 1.1: Comparison of the three separation technologies for carbon capture and storage (CCS)
Figure 1.4: Schematic representation of an absorber-stripper column system in PCC
Figure 1.5: The three important aspects of PCC in a chemist point of view
Figure 1.6: Zwitterion formation
Figure 1.7: Ater-molecular mechanism
Figure 1.8: Complete reaction model for CO₂, H₂O and amine interactions
Table 1.2: Some published rate and equilibrium constants for the reaction of CO₂ in water and the ionic product of water at 25 °C. All kinetic and equilibrium values have been corrected to zero ionic strength
Figure 1.9: Our complete reaction model for CO₂, H₂O and amine interactions
Figure 1.10: Contribution of the four main reaction sets to the total enthalpy of CO₂ desorption at 40 °C
Figure 1.11: Structures of primary/sterically hindered amines
Figure 1.12: Structures of secondary amines
Figure 1.13: Structures of tertiary amines
Figure 1.14: Structure of 2-amino-2-methyl-1-propanol (AMP)
Figure 1.15: Structure of piperazine (PIPZ)
Figure 1.16: Molecular structure of 2-piperidineethanol & 3-piperidinemethanol
Figure 1.17: Molecular structure of piperidine (PIPD) & pyrrolidine (PYRR)
Figure 1.18: Structure of N-methyl(diethanolamine(N-MDEA)

Chapter 2: Experimental

Figure 2.1: Complete reaction model for CO₂, H₂O and amine interactions
Figure 2.2: a) Stopped-flow set up, b) enlarged view of the driving syringes
Figure 2.3: Absorbance data for the reaction of 6 mM MORP with 6 mM CO\textsubscript{2(aq)} at 25 °C in the presence of 12.5 µM indicator (thymol blue): a) three dimensional representation of absorbance vs wavelength vs time, b) absorbance vs wavelength at selected time intervals

Figure 2.4: Typical traces for a reaction reproducibility

Figure 2.5: Series of 1H NMR spectra’s over different time interval for MORP/HCO\textsubscript{3}− solution at 25 °C

Figure 2.6: 1H NMR for MORP from a) the literature database and b) determined in this project

Figure 2.7: NMR tube with a capillary

Figure 2.8: The pH-dependent behaviour of the 1H NMR spectrum of a MORP/Na\textsubscript{2}CO\textsubscript{3} solution with HCl solution

Figure 2.9: Variation in the species present in the solution determined from the 1H NMR spectrum at different pH values

Figure 2.10: Chemical shifts of MORP and its carbamate (at 25 °C) observed in the 1H NMR spectra

Figure 2.11: Equilibrium concentration profiles for the titration of MORP/Na\textsubscript{2}CO\textsubscript{3} (0.040 M/0.080 M with added 2.0 M HCl) at 288, 298, 308 and 318 K. The MORP species (protonated + deprotonated) are depicted by the empty markers and the MORP-carbamate species (protonated + deprotonated) correspond to the filled markers

Figure 2.12: The log K\textsubscript{9} vs 1/T plot for MORP/Na\textsubscript{2}CO\textsubscript{3} vs HCl

Figure 2.13: Schematic representation of an automated potentiometric titration set-up

Figure 2.14: Snap-shot of the data acquisition program used in the potentiometric titrations

Figure 2.15: An example plot of the pH vs volume of NaOH added from a potentiometric titration experiment for MORP/HCl, illustrating closeness of model fit to experimental data

Figure 2.16: A concentration profile vs pH for titration of protonated amine with base

Figure 2.17: Temperature dependence of log K\textsubscript{6} vs (T/K)−1 x 1000 for MORP/HCl vs NaOH

Table 2.1: Summary of the global experimental section
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>2-amino-2methyl-1-propanol</td>
</tr>
<tr>
<td>AHPD</td>
<td>2-amino-2-hydroxymethyl-1-3-propandiol</td>
</tr>
<tr>
<td>BIS</td>
<td>2-amino-1,3-propandiol</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon capture and sequestration</td>
</tr>
<tr>
<td>CFC’s</td>
<td>Chlorofluorocarbons</td>
</tr>
<tr>
<td>H₂CO₃</td>
<td>Carbonic acid</td>
</tr>
<tr>
<td>CO₃²⁻</td>
<td>Carbonate</td>
</tr>
<tr>
<td>DEA</td>
<td>Diethanolamine</td>
</tr>
<tr>
<td>GHG’s</td>
<td>Greenhouse gases</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>Hydrogen carbonate/Bicarbonate</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>MEA</td>
<td>Monoethanolamine</td>
</tr>
<tr>
<td>MORP</td>
<td>Morpholine</td>
</tr>
<tr>
<td>MDEA</td>
<td>Methyldiethanolamine</td>
</tr>
<tr>
<td>¹H NMR</td>
<td>Proton Nuclear Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>PIPZ</td>
<td>Piperazine</td>
</tr>
<tr>
<td>PCC</td>
<td>Post-combustion capture</td>
</tr>
<tr>
<td>PIPD</td>
<td>Piperidine</td>
</tr>
<tr>
<td>PYRR</td>
<td>Pyrrolidine</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>pKa</td>
<td>Protonation constant</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethanolamine</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>VLE</td>
<td>Vapour-liquid equilibrium</td>
</tr>
</tbody>
</table>
Abstract

The global community is currently facing a significant challenge in the form of climate change. The increasing emissions of greenhouse gases, especially carbon dioxide CO_2 is threatening the constitution of the Earth’s climate. This fosters the need for the removal of CO_2 from coal-fired power plants as it is the largest contributor to global CO_2 emissions.

One possible option for mitigating climate change is by CO_2 capture and sequestration (CCS), employing post-combustion capture of CO_2 (PCC). PCC is a mature technology for the capture of CO_2, as it is currently used in industry for gas-sweetening processes. The typical flue gas in power plants consists of about 80% N_2 and about 15% CO_2, with the remainder mainly unused O_2. For PCC purposes, separation of the two gases N_2 and CO_2 is important for compression, transportation and storage of CO_2. This can be achieved by reversible chemical absorption using amine-based solvents. Application of chemical absorption technology to power plants is not straightforward and poses several new challenges for chemists and chemical engineers, especially with the high cost associated with the process.

From a chemist’s point of view for PCC to be efficient the three main requirements are: 1) a fast reaction rate - this is the rate at which CO_2 interacts with the amine in aqueous solutions. For an ideal process the absorption of CO_2 has to be fast in order to minimise the size of the absorber column, 2) the stoichiometry of the amine-CO_2 interaction has to be 1:1 leading to a high loading capacity, and 3) the regeneration of the amine in the stripper column, the energy requirement of which is related to the protonation/deprotonation of the amine should be as low as possible, leading to a low cost and more efficient capture process.

A substantial number of studies on the interactions of amines and CO_2 have been published in the literature. However, most of the studies focus on the empirical functions but lack a mechanistic approach. As a consequence, the mechanism of the amine-CO_2 interaction is not clear. This thesis focuses on the molecular kinetics, the equilibria of carbamate formation in the reaction between amine and CO_2 in aqueous
solution, and the protonation constant of the amine. The amines investigated can be classified as primary, sterically-hindered primary, secondary, substituted-cyclic secondary and tertiary amines, with the aim of elucidating the possible effects of their chemical structures, electronic and steric effects, hydrogen bonding and substitution on the reaction rate of CO₂ absorption, carbamate stability and protonation/deprotonation of the amine.

As a result of this thesis we developed a complete reaction scheme in homogenous solution for the absorption of CO₂(aq) with H₂O/OH and amine. The reaction scheme is complicated and involves a number of kinetically observable reactions, defined by rate and equilibrium constants and protonation equilibria that are all coupled together. A detailed explanation of the scheme is given in all of the papers and also in the Introduction to this thesis.

The rate and equilibrium constants for a number of amines was investigated using stopped-flow spectrophotometry as this technique is capable of monitoring fast reactions occurring at the milliseconds time scale, while ¹H NMR spectroscopy was used to monitor slower reactions. Monoethanolamine (MEA) and ammonia (NH₃) were investigated from 15 °C to 45 °C, analysis of the rate and equilibrium constants in terms of the Arrhenius, Eyring, and van’t Hoff relationships gave the relevant thermodynamic parameters. For sterically-hindered amines, substituted cyclic amines and piperazine a Brønsted correlation relating the protonation constant of the amines to the carbamic acid formation rate and equilibrium constants at 25 °C were established. The resulting values are reported in this thesis (Papers 3, 4, 5, 7, 8 and 9).

A separate temperature dependence study of the equilibrium constant for the formation of carbamate and the protonation/deprotonation of the carbamate was undertaken using ¹H NMR spectroscopy. The outcome of the study was the determination of the equilibrium constants and thermodynamic parameters such as enthalpy, entropy and Gibbs free energy of reaction. A ΔHₘ°-ΔSₘ° plot generates a linear correlation for carbamate formation and this relationship helps provide a guide to the selection of an amine(s) solvent for CO₂ capture, in terms of enthalpy
considerations. A linear $\Delta H_m^\circ - \Delta S_m^\circ$ plot also occurs for carbamate protonation. All the relevant values are detailed in Papers 1 and 6.

The basicity of the amine is a very important characteristic in the absorption/desorption process; hence potentiometric titrations were used in the determination of the protonation constants of amines from 15 °C to 45 °C. The resulting protonation constants, enthalpies, entropies and Gibbs free energies are given in Paper 2. Also trends in ΔH_m° are correlated with systematic changes in composition and structure of the selected series of amines/alkanolamines, while $\Delta H_m^\circ - \Delta S_m^\circ$ plots generated linear correlations for the mono-, di-, and trialkanolamines, the –CH$_2$OH and –CH$_2$CH$_2$OH substituted piperidines, and the alkylamines. These relationships provide a guide to the selection of an amine(s) solvent for CO$_2$ capture. Wherever possible, a comparison with the literature values for the kinetic, carbamate stability and the amine protonation are given in the papers.