Optimising nutrition interventions to improve postprandial glycaemia for children and adolescents using intensive insulin therapy

Carmel Elizabeth Mary Smart, BSc, Grad Dip Nutr and Diet

A thesis submitted for the degree of PhD (Nutrition and Dietetics)

April 2012
Statement of originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Carmel Smart
Acknowledgements

I would like to firstly gratefully acknowledge the support of my husband, Bruce Smart and my research supervisors. Without Bruce’s selfless help, enduring support and ability to conjure family meals in thirty minutes, this thesis would still be an idea. Bruce, I thank you for your sense of humour and always reminding me what life is really all about.

I would also like to sincerely acknowledge the outstanding commitment and mentorship of my two supervisors, Professor Clare Collins and Associate Professor Bruce King. Clare, I am forever grateful that you encouraged me to pursue a PhD and believed in my ability to do so. Your passion for dietetic research, academic rigor and constant availability and feedback inspired me to complete the studies. Also your patience, friendship and practical advice on balancing work and family life have been invaluable. I also offer sincere thanks to Bruce for his analytical approach to each study question, his ability to think outside the square and for his critical appraisals of my scientific writing. Bruce, your insight into translating clinical research into improved care of children with diabetes is inspiring.

I would also like to sincerely thank the children with type 1 diabetes and their families who participated in the studies. Without their enthusiastic involvement and commitment above and beyond their daily diabetes management, the questions would not have been asked and the studies would not have occurred.

The work presented in this thesis has involved the support of many people. The studies presented in Chapters 4 and 6 were carried out in collaboration with Dr Julie Edge and Karen Ross from Oxford Childrens Hospital in the UK, and I would like to thank Karen and Julie for making collaborative research so much fun. I would also like to gratefully acknowledge the patience and diligence of the two statisticians, Associate Professor Patrick McElduff and Kim Colyvas who assisted with the analyses of these studies. I would particularly like to acknowledge Patrick for his additional guidance and mentorship.
Thank you also to Dr Sheridan Waldron for her words of wisdom and ongoing encouragement via emails across the world; Melinda Morrison for her keen sense of humour and sharing the PhD experience; Jane McDonald for her guidance on formatting and for always being so generous with her time and advice, particularly at the end when she rightly suggested “Just get it in!”; the Diabetes Team at the John Hunter Childrens Hospital for their support, particularly Helen Phelan and Kathy Hodge; and my Dietetic colleagues at the John Hunter Childrens Hospital for their input and encouragement, in particular Denise WongSee, Deirdre Burgess and Lori Hopley.

I also acknowledge my extended family and friends, and in particular my parents, who taught me the importance of education and the need to believe in yourself and persevere when things get tough. I sincerely appreciate your endless support.

Finally, but very importantly, I would like to thank my three sons Michael, Oliver and Patrick, who over the years this thesis has being written, have grown into wonderful young men. Thank you for being so patient, particularly over the last six months, and showing me the most important and satisfying “job” in the world is being a mum.

This thesis was completed with the assistance of an Australian Postgraduate Award and supported by grants from the Australasian Paediatric Endocrine Group, Novo Nordisk Australian Diabetes Regional Support Scheme and the John Hunter Childrens Research Foundation.
Acknowledgement of collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Carmel Smart
Acknowledgement of authorship

I hereby certify that this thesis is in the form of a series of published papers of which I am joint author. I have included as part of the thesis a written statement from each co-author, endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

Carmel Smart
List of publications included as part of the thesis

Smart CE, Hopley LK, Burgess D, Collins CE. Biting off more than you can chew; is it possible to precisely count carbohydrate? Nutrition and Dietetics. 2011;68(3):227-30.

Statement of contributions of others
I attest that Research Higher Degree candidate Carmel E M Smart contributed to the following paper through development of the research question, development of the methodology, assisting with the questionnaire dissemination, follow-up and data collation, assisting with analysis of the results, contributing to the discussion and writing the manuscript.

Professor Clare E Collins Date 14.11.2011

Julia Steenkamp (nee Schoonbeek) Date: 21/10/2011

Carmel Smart Date: 08/11/2011

Professor John Rostas Date: 5/4/12

Assistant Dean Research and Training
I attest that Research Higher Degree candidate Carmel E M Smart contributed to the following paper through initiation and development of the research question, development of the methodology including the questionnaire, recruiting the participants from the John Hunter Children's Hospital Australia, conducting the study in Australia including meal preparation and data collection, assisting with analysis and interpretation of the results, contributing to the discussion and writing the manuscript.

The study was carried out in collaboration with Dr Julie Edge and Mrs Karen Ross, Department of Endocrinology, Oxford Children's Hospital, UK. Dr Edge and Mrs Ross assisted with the questionnaire development, recruited participants and conducted the study in the UK, entered the data and reviewed the manuscript.

Can children with Type 1 diabetes and their caregivers estimate the carbohydrate content of meals and snacks? published in Diabetic Medicine 2010; Volume 27(3): Pages 348-353.

Professor Clare E Collins Date 14.11.2011

Dr Bruce King Date: 08.11.2011

Dr Julie Edge Date: 21/10/2011
Dr Patrick McElduff Date: 08.11.2011

Carmel Smart Date: 08.11.2011

Karen Ross Date: 21/10/2011

Professor John Rostas Date: 5/4/12

Assistant Dean Research and Training
I attest that Research Higher Degree candidate Carmel E M Smart contributed to the following paper through development of the research question, methodology design, assisting with analysis and interpretation of the data, critical revision of the literature and writing the manuscript.

Smart CE, Hopley LK, Burgess D, Collins CE: Biting off more than you can chew; is it possible to precisely count carbohydrate? *Nutrition and Dietetics* 2011 68:227-230.

Professor Clare E Collins Date: 14.11.2011

Ms Lori Hopley Date: 16.11.11

Mrs Deirdre Burgess Date: 17.11.11

Carmel Smart Date: 08.11.2011

Professor John Rostas Date: 5/11/12

Assistant Dean Research and Training
I attest that Research Higher Degree candidate Carmel E M Smart contributed to the following paper through initiation and development of the research question, development of the methodology, recruiting the participants from the John Hunter Children’s Hospital Australia, conducting the study in Australia including meal preparation and data collection, assisting with analysis and interpretation of the results, contributing to the discussion and writing the manuscript.

The study was carried out in collaboration with Dr Julie Edge and Mrs Karen Ross, Department of Endocrinology, Oxford Children’s Hospital, UK. Dr Edge and Mrs Ross recruited participants and conducted the study in the UK, entered the data and reviewed the manuscript.

Professor Clare E Collins Date 14.11.2011

Dr Bruce King Date: 08.11.2011

Dr Julie Edge Date: 21/10/2011

Karen Ross Date: 21/10/2011
Mr Kim Colyvas
Date: 7/11/2011

Carmel Smart
Date: 08.11.2011

Professor John Rostas
Date: 14/12

Assistant Dean Research and Training
I attest that Research Higher Degree candidate Carmel E M Smart contributed to the following paper through development of the research question, development of the methodology, recruiting the participants, conducting the study including meal preparation and data collection, assisting with analysis and interpretation of the results, contributing to the discussion and writing the manuscript.

Professor Clare E Collins
Date: 14.11.2011

Dr Bruce King
Date: 08.11.2011

Dr Patrick McElduff
Date: 08.11.2011

Carmel Smart
Date: 08.11.2011

Professor John Rostas
Date: 08.11.2011

Assistant Dean Research and Training
List of additional publications and conference presentations

List of additional publications of relevance to the thesis

List of conference presentations of relevance to the thesis

Invited speaker

Smart CE What is new in nutrition research? Annual State Meeting of the Australian Diabetes Educators Association (Queensland Branch), Brisbane, Australia, June 2011.

Smart CE Carbohydrate Controversies – “Precise” carbohydrate counting – necessary to optimise glycaemia? Starship Children’s Health Paediatric Diabetes Symposium, Auckland, New Zealand, April 2011

Smart CE Counting carbohydrate in paediatric diabetes management. Annual State Meeting of the Dietitians Association of Australia (NSW Branch), Newcastle, Australia, October 2010.

Smart CE Controversies in carbohydrate counting. Australasian Paediatric Endocrine Group 2010 Annual Scientific Meeting, Adelaide, Australia, August 2010.

Smart CE The impact of carbohydrate quantity and quality on postprandial glycaemia in insulin pump therapy. Australian Paediatric Society’s 5th Annual Diabetes Workshop, Gold Coast, Australia, August 2010.

Smart CE What are the optimal nutritional interventions for children on intensive therapy? Princess Margaret Hospital, Endocrine and Diabetes Department, Perth, Australia, February 2010.

Smart CE Optimising nutritional interventions for children using intensive therapy. Royal North Shore Hospital, Endocrine and Diabetes Department, NSW, Australia 2009.

Smart CE, Haniff-Ismail S, Delamater A Meal planning for diabetes in different age groups and cultures. International Society of Pediatric and Adolescent Diabetes 34th Annual Scientific Meeting, Durban, South Africa. 2008.

Conference Abstracts

Smart CE, Collins CE, King BR, Ross K, Edge JA Can children and adolescents with Type 1 diabetes on intensive insulin therapy count carbohydrate adequately enough to adjust pre-meal insulin? Dietitians Association of Australia, 26th National Conference, Gold Coast, Australia, May 2008 (Oral presentation).

Ryan RA, King BR, Collins CE, Crock PA, Anderson DA, Smart CE Glycemic Index and preprandial insulin affect postprandial glucose control more than insulin type. ISPAD Conference, Berlin, Germany, September 2007 (Awarded Best Poster), published in Pediatric Diabetes 2007: 8(Suppl 7): 60.
Table of Contents

- Statement of originality ... ii
- Acknowledgements .. iii
- Acknowledgement of collaboration .. v
- Acknowledgement of authorship .. vi
- List of publications included as part of the thesis vii
- Statement of contributions of others .. viii
- List of additional publications and conference presentations xiii
- List of additional publications of relevance to the thesis xiii
- List of conference presentations of relevance to the thesis xiii
- Invited speaker .. xiv
- Conference Abstracts ... xiv
- List of Abbreviations ... xxii

Abstract .. 1

Chapter 1

- Introduction .. 3
 - Background .. 3
 - 1.1.1 Incidence and prevalence of Type 1 Diabetes in Australian children ... 4
 - 1.1.2 Primary prevention of Type 1 Diabetes 5
 - 1.1.3 Complications of Type 1 Diabetes .. 7
 - 1.1.4 Overview of insulin treatment ... 10
 - 1.1.5 Monitoring of glycaemic control .. 12
 - 1.1.6 Continuous Glucose Monitoring ... 16
 - 1.2 Nutritional management of Type 1 Diabetes: Carbohydrate quantification .. 19
 - 1.2.1 Historical review of carbohydrate quantification 19
 - 1.2.2 The evidence for carbohydrate quantification 21
 - 1.2.3 Methods of carbohydrate quantification 25
 - 1.2.4 Carbohydrate counting in clinical practice 26
 - 1.3 Research aims ... 28

Chapter 2: Literature Review

- Nutritional management of children and adolescents using intensive insulin therapy ... 30
 - 2.1 Overview of medical nutrition therapy 31
 - 2.1.1 Paediatric Nutrition Guidelines .. 31
 - 2.1.2 Goals of nutrition therapy .. 32
 - 2.1.3 Dietary requirements ... 32
 - 2.1.4 Dietary behaviours ... 33
 - 2.1.5 Carbohydrate amount and distribution 34
 - 2.1.6 Glycemic Index .. 36
 - 2.1.7 Other considerations in dietary management 37
 - 2.2 Nutritional management of children and adolescents using insulin pump therapy .. 39
 - 2.3 Nutritional management of children and adolescents using multiple daily injections ... 42
 - 2.4 What is the dietary knowledge of children and adolescents using intensive insulin therapy? .. 44
Chapter 6 Children and adolescents on intensive insulin therapy maintain postprandial glycaemic control without precise carbohydrate counting

5.1 Introduction ..98
5.2 Methods ..99
5.3 Results ...100
5.4 Discussion ...102

Chapter 7 In children using intensive insulin therapy, a 20 gram variation in carbohydrate amount significantly impacts on postprandial glycaemia

6.1 Introduction...104
6.2 Patients and Methods..106
6.2.1 Patients ..107
6.2.2 Study procedure ..107
6.2.3 Test meals ...108
6.2.4 Blood Glucose measurement ...109
6.2.5 Statistical analyses ...110
6.3 Results ...111
6.3.1 CSII and MDI therapy groups ...111
6.3.2 Pooled CSII and MDI Results ..112
6.4 Discussion ...115

Chapter 8 Discussion and recommendations for clinical practice and future research

7.1 Introduction...118
7.2 Patients and Methods..120
7.2.1 Statistical Analyses ..122
7.3 Results ...123
7.4 Discussion...125

Chapter 8 Discussion and recommendations for clinical practice and future research

8.1 Overview...127
8.2 Summary of major findings ..127
8.2.1 Nutritional management in insulin pump therapy ..127
8.2.2 Skills in carbohydrate quantification ..129
8.2.3 Effect of carbohydrate variations on postprandial glycaemia132
8.3 Limitations of the research ...133
8.3.1 Survey of nutritional management in insulin pump therapy133
8.3.2 Skills in carbohydrate quantification ..134
8.3.3 Effect of carbohydrate variations on postprandial glycaemia134
8.4 Implications for clinical practice ..135
8.4.1 Nutrition education in insulin pump therapy ...135
8.4.2 Strategies to improve carbohydrate estimation skills ..137
8.4.3 Required accuracy in carbohydrate counting ...140
8.5 Future research ...142
8.5.1 Nutritional management in insulin pump therapy ..142
8.5.2 Carbohydrate estimation skills ... 143
8.5.3 Methods of carbohydrate quantification .. 143
8.6 Summary ... 144
References .. 146
Appendix A: Survey of the nutrition education of children and adolescents on insulin pump therapy in Australia ... 176
Appendix B: Carbohydrate knowledge questionnaires of displayed real foods (Australian and UK versions) ... 180
Appendix C: Evidence of acceptance of paper: “In children using intensive insulin therapy, a 20 gram variation in carbohydrate amount significantly impacts on postprandial glycaemia.” .. 189
Appendix D: Permission letters regarding copyright of published papers 192
Table of Figures

Figure 2:1 Framework of Literature Review ..30

Figure 3:1 Number of patients with type 1 diabetes (< 18 yrs of age) at each center and the number on insulin pump therapy. ...73

Figure 3:2 Issues covered in nutrition education sessions at insulin pump commencement ...74

Figure 3:3 Issues covered in nutrition education sessions after insulin pump commencement ...75

Figure 4:1 The relationships between mean gram error (A) and mean absolute gram error (B) by meal size and carbohydrate estimation method in 102 children and adolescents with type 1 diabetes on intensive insulin therapy and 110 primary caregivers who estimated 17 standard meals and snacks. There was no relationship between error and method of carbohydrate counting (● Gram increments □ 10 gram Portions ▲ 15 gram exchanges) (p>0.05). ..91

Figure 5:1 The variations in the reported, mean, minimum and maximum weights of slices of bread within and between 11 different loaves available in Australia. (♦) Reported weight; (▲) Mean weight; (●) Minimum weight; (■) Maximum weight ...100

Figure 6:1 Mean postprandial glucose levels for meals of 50, 60 and 70grams of carbohydrate for 14 children on multiple daily injection therapy (MDI) and 17 children on insulin pump therapy (Pump). There was no difference between the insulin therapy groups at any time point for comparable carbohydrate loads (Repeated-measures ANOVA p>0.05). The error bars represent 95% CI’s.112

Figure 6:2 Mean postprandial glucose levels for 31 children on intensive insulin therapy. There was no difference between the 50 and 60gram and 60 and 70gram carbohydrate loads up to 150 minutes (p>0.05). There was a significant difference between the 60 and 70gram loads from 150 to 180 minutes (p<0.03). The error bars represent 95% CI’s. ...113

Figure 7:1 Postprandial glucose excursions for 34 children after meals containing 40g, 50g, 60g, 70g and 80g carbohydrate with an insulin dose calculated for 60 gram carbohydrate. ...124
Table of Tables

Table 2:1 Recommendations for carbohydrate intake for different insulin regimens ..35

Table 4:1 Demographic characteristics of children and adolescents by carbohydrate counting method ..90

Table 4:2 Mean absolute gram error of children and adolescents with type 1 diabetes and caregivers (n=212) by carbohydrate counting method and meal type ...92

Table 5:1 The variation in carbohydrate (CHO) contents between the minimum, maximum and the reported (a) slices of bread across 11 loaves (b) ...101

Table 6:1 Macronutrient composition for 50, 60 and 70 gram Carbohydrate Test Meals ..109

Table 6:2 Clinical characteristics of subjects by Insulin Therapy Group (Insulin Pump and Multiple Daily Injections (MDI)). ..111

Table 6:3 Mean preprandial BGL, one and two hour postprandial BGLs, peak BG excursion, time to peak BGL and two hour AUC above baseline for each test meal for 31 children and adolescents on intensive insulin therapy ..114

Table 7:1 Macronutrient composition for 40, 50, 60, 70 and 80 gram Carbohydrate Test Meals ...121
List of Abbreviations

AUC Area under the curve
BGL Blood glucose level
BMI Body Mass Index
CGMS Continuous glucose monitoring system
CHO Carbohydrate
CSII Continuous subcutaneous insulin infusion
DAFNE Dose Adjustment for Normal Eating
DCCT Diabetes Control and Complications Trial
DTTP Diabetes Treatment and Teaching Program
EDIC Epidemiology of Diabetes Interventions and Complications
FII Food Insulin Index
FIIT Flexible intensive insulin therapy
g Gram
GI Glycemic Index
HbA1c Glycated haemoglobin
IDF International Diabetes Federation
ISPAD International Society of Pediatric and Adolescent Diabetes
I:CHO Insulin to carbohydrate ratio
IPT Insulin pump therapy
L Litre
MDI Multiple daily injections
PPG Postprandial glucose
RDI Recommended Daily Intake
SD Standard deviation
T1DM Type 1 Diabetes Mellitus
Yrs Years
Abstract

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder that presents a significant set of challenges to the child, their family and the interdisciplinary team of health professionals. Medical nutrition therapy is an essential component of education for children with T1DM. However, there are gaps in the evidence regarding the optimal approach to dietary management of children and adolescents using intensive insulin therapy, including the precision required in carbohydrate counting to maintain glycaemic control; the ability of children and their families to accurately count carbohydrate; and the impact of errors in carbohydrate quantification on postprandial glycaemia. The primary purpose of this thesis is to investigate the effect of variations in carbohydrate quantity on postprandial glycaemia, and the ability of children and their families to estimate carbohydrate using different quantification methods.

The results of the national survey on the dietary management of children and adolescents on insulin pump therapy highlighted diversity in clinical dietetic practice. Overall, a lack of evidence and consensus was identified with regard to the degree of precision required in carbohydrate counting estimations. Furthermore, limitations exist in the accuracy of the nutrition information panel on a food label, which has direct implications for clinical practice.

The optimal method of quantifying carbohydrate (one gram increments, 10 gram portions or 15 gram exchanges) remains a controversial issue. A questionnaire conducted in clinics in Australia and the UK that examined the ability of children and their parents to count carbohydrate, demonstrated that 73 percent of all estimates (n=2530) were within a 10-15gram error margin, no matter which method of estimation was used. This study showed that children and their parents can quantify carbohydrate in meals with reasonable accuracy, provided education is given by experienced health professionals.

The carbohydrate variation studies were undertaken to assess the impact of 10 gram and 20 gram variations in carbohydrate amount of a standardised meal for a set insulin dose. The studies demonstrated that insulin covers a range in carbohydrate amounts,
and that a 10 gram variation in carbohydrate estimations for a meal containing 60 grams of carbohydrate does not make a difference to postprandial glucose levels, but that a 20 gram variation results in significant postprandial hypoglycaemia and hyperglycaemia.

Overall, this sequence of studies seeks to improve the effectiveness of medical nutrition therapy related to premeal insulin adjustment for carbohydrate amount. The clinical implications of the findings presented in this thesis are discussed and specific recommendations offered for practice and research in order to facilitate improved outcomes for children living with type 1 diabetes.