THE ROLE OF PROTEIN PHOSPHATASE 2A AS A TUMOUR SUPPRESSOR IN BREAST CANCER

Lauren Frances Watt
B. Biomed Sci (Hons)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

August 2012
STATEMENT OF ORIGINALITY

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library**, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.

Lauren Watt
August 2012
TABLE OF CONTENTS

Abstract ... xviii
Acknowledgments ... xix
Presentations .. xxi
Abbreviations ... xxv

1. INTRODUCTION .. 1

1.1. Breast Cancer .. 1

1.1.1. Epidemiology .. 1

1.1.2. Breast cancer development and progression .. 2

1.2. Signalling pathways in breast cancer .. 9

1.2.1. Estrogen receptor .. 10

1.2.2. Receptor tyrosine kinases .. 12

1.2.3. Ras/ERK pathway ... 13

1.2.4. Phosphoinositide 3-kinase pathways .. 17

1.2.5. Cross talk between signalling pathways and implications for breast cancer therapies 21

1.3. Breast cancer therapies targeting specific signalling pathways .. 24

1.3.1. Current breast cancer therapies .. 24

1.3.2. Anti-estrogen therapies ... 26

1.3.3. Receptor tyrosine kinase inhibitors .. 27

1.3.4. Ras/ERK pathway inhibitors .. 28

1.3.5. PI3K/AKT pathway inhibitors ... 29

1.4. Protein phosphatases ... 31

1.4.1. Protein phosphatase 2A (PP2A) .. 32

1.5. PP2A regulation ... 40

1.5.1. Regulatory B subunit binding .. 40

1.5.2. Post-translational modifications .. 43

1.5.2.1. Methylation ... 44

1.5.2.2. Phosphorylation of PP2A-C ... 46

1.5.2.3. Phosphorylation of PP2A-B’ subunits .. 47

1.5.3. PP2A binding proteins .. 48

1.5.3.1. SET ... 49
1.5.3.2. α4 ... 49
1.5.3.3. CIP2A ... 50
1.5.3.4. PTPA ... 51
1.5.3.5. Other Binding Proteins 51

1.6. PP2A in cellular signalling ... 53
1.6.1. Estrogen receptor ... 53
1.6.2. Receptor tyrosine kinases .. 54
1.6.3. Ras/ERK pathway .. 55
1.6.4. PI3K/Akt pathway .. 60
1.6.5. p53 ... 64
1.6.6. c-Myc ... 68
1.6.7. Wnt ... 70
1.6.8. Cellular adhesion and migration 72
1.6.9. Cell cycle .. 76
1.6.10. PP2A as hub of cellular signalling 77

1.7. Protein phosphatase 2A in cancer 80
1.7.1. Pharmacological inhibition 80
1.7.2. DNA tumour viruses ... 80
1.7.3. PP2A inhibition by endogenous binding proteins 83
1.7.4. PP2A activity in cancer patients 84
1.7.5. PP2A mutations in human cancers 85
1.7.6. Reduced expression of PP2A subunits 89

1.8. Models of breast cancer ... 93
1.8.1. Cell lines .. 93
1.8.2. MCF10A three-dimensional culture system 93
1.8.3. Animal models .. 97
1.8.4. Breast tumour samples ... 98

1.9. Project objectives ... 99

2. MATERIALS AND METHODS 100
2.1. Chemicals and Reagents ... 100
2.2. Molecular Biology .. 100
2.2.1. Retroviral vectors ... 100
2.2.2. PCR reaction for subcloning PP2A-Aα mutants into pBABE puro 100
2.2.3. PP2A-Aα shRNA oligo annealing ... 103
2.2.4. Restriction digests .. 104
2.2.5. DNA electrophoresis .. 104
2.2.6. DNA purification from agarose gel ... 104
2.2.7. Nucleic acid quantification ... 105
2.2.8. Shrimp Alkaline Phosphatase treatment 105
2.2.9. Ligation of PCR reaction and vector .. 106
2.2.10. Bacterial transformation, DNA expansion and purification 106
2.2.11. DNA sequencing and analysis .. 108

2.3. Cell culture .. 110
2.3.1. Cell culture reagents and medias ... 110
2.3.2. Cell lines ... 110
2.3.3. Revival of cell lines ... 113
2.3.4. Passaging two-dimensional cultures 113
2.3.5. Cryopreservation of cell lines .. 114
2.3.6. Three-dimensional (3D) cell culture .. 114

2.4. Generation of MCF10A cell lines with altered PP2A 116
2.4.1. Retroviral supernatant from Phoenix-Eco packaging cells 116
2.4.2. Retroviral infection of MCF10A .. 116
2.4.3. Flow cytometry ... 117

2.5. Analysis of altered cellular functions ... 119
2.5.1. Light microscopy ... 119
2.5.2. Cell proliferation assay ... 119
2.5.3. Wound healing assays .. 119
2.5.4. Anchorage independent growth assays 120
2.5.5. Epidermal growth factor (EGF) stimulation 120

2.6. Gene sequencing and mRNA expression analysis 121
2.6.1. RNA extraction and cDNA production 121
2.6.2. Sequence analysis of PP2A-A .. 122
2.6.3. Quantitative real-time PCR (qRT-PCR) 122

2.7. Western blotting ... 126
2.7.1. Cell lysis and protein concentration 126
2.7.2. Western blotting... 126

2.8. Immunofluorescence .. 132
 2.8.1. Two-dimensional (2D) immunofluorescence 132
 2.8.2. Three-dimensional (3D) immunofluorescence 135
 2.8.3. Confocal microscopy ... 136

2.9. PP2A activity assay .. 137
 2.9.1. Immunoprecipitation .. 137
 2.9.2. Colourmetric assay .. 138

2.10. Immunohistochemistry ... 139

2.11. Statistical analysis .. 141

3. CHARACTERISATION OF PP2A IN BREAST CANCER 142

3.1. Introduction ... 142

3.2. Breast cancer cell lines ... 145
 3.2.1. Human mammary epithelial cells 145
 3.2.2. MCF10A ... 145
 3.2.3. MCF7 ... 147
 3.2.4. MDA-MB-231 and MDA-MB-468 147
 3.2.5. HMT-3522-S2 and HMT-3522-T42 147
 3.2.6. T47D ... 148
 3.2.7. DU4475 ... 148

3.3. Results ... 149
 3.3.1. PP2A subunit protein expression is varied in a panel of breast cancer cell lines .. 149
 3.3.2. PP2A subunit mRNA expression does not correlate with protein expression ... 154
 3.3.3. Mutations in PP2A-A do not account for reduced regulatory B subunit protein expression .. 163
 3.3.4. Post-translational methylation of PP2A-C is reduced in breast cancer cell lines, but phosphorylation of PP2A-C does not change 163
 3.3.5. Expression of PP2A binding proteins is altered in breast cancer ... 165
 3.3.6. PP2A activity is increased in breast cancer cell lines 165
 3.3.7. Sub-cellular location of PP2A subunits in breast cancer 168
3.3.8. PP2A expression in an MCF10A three-dimensional culture model of breast development is associated with integrin expression and apoptosis. ... 185

3.3.9. PP2A-A expression is reduced in human breast tumour tissue 196

3.4. Discussion ... 219

4. ESTABLISHMENT OF CELL LINES WITH KNOCKED DOWN OR MUTATED PP2A SUBUNITS ... 228

4.1. Introduction .. 228

4.2. Results .. 231

4.2.1. Generation of MCF10A cells expressing the SV40 small T antigen..... 231

4.2.2. Generation of MCF10A cells with reduced PP2A subunit expression... 234

4.2.2.1. Regulatory B subunits ... 234

4.2.2.2. PP2A-Aα .. 234

4.2.2.3. PP2A subunit expression in MCF10A shRNA cell lines 240

4.2.3. Generation of MCF10A cells with PP2A-Aα mutations 240

4.3. Discussion .. 251

5. THE FUNCTIONAL ROLE OF PP2A SUBUNITS IN BREAST CANCER ... 255

5.1. Introduction .. 255

5.2. Results: Functional effects of PP2A inhibition by the SV40 small T antigen in MCF10A cells ... 258

5.2.1. MCF10A-ST cells demonstrate growth factor independent proliferation, but not anchorage independent growth....................... 258

5.2.2. MCF10A-ST cells do not have reduced overall PP2A activity 261

5.2.3. Akt and ERK signalling is not significantly altered in MCF10A-ST cells ... 261

5.2.4. MCF10A-ST three dimensional cultures are larger but more phenotypically normal than MCF10A-Mut3 acini................................. 264

5.2.5. PP2A expression is reduced at the basal membrane of MCF10A-ST acini ... 270

5.2.6. Phenotypically normal MCF10A-ST 3D acini have a higher proliferation rate than normal MCF10-Mut3 acini. .. 279
5.3. Results: Functional effects of regulatory B subunit knockdown in MCF10A cells

5.3.1. Suppression of regulatory B subunits does not induce transformation using traditional culture techniques

5.3.2. PP2A activity is increased in MCF10A-B’γ shRNA cells

5.3.3. PP2A-B’α shRNA enhances ERK activation

5.3.4. Knockdown of PP2A regulatory B subunits produces an altered phenotype in 3D cultures

5.3.5. PP2A subunit expression in acini with regulatory B subunit knock down

5.4. Results: Functional effects of PP2A-Aα knockdown in MCF10A cells

5.4.1. MCF10A-Aα shRNA cells display growth factor independent proliferation, have reduced PP2A activity and increased activation of the ERK signalling pathway

5.4.2. MCF10A cells with reduced PP2A-Aα expression produce smaller acini in 3D culture, with limited evidence of transformation

5.5. Discussion

5.5.1. Low levels of SV40 ST expression does not fully transform MCF10A cells

5.5.2. Knockdown of regulatory B subunits induces a tumourigenic phenotype in 3D cultures

6. FUNCTIONAL EFFECTS OF PP2A-Aα MUTATIONS IN HUMAN BREAST EPITHELIAL CELLS

6.1. Introduction

6.2. Results: Expression of PP2A-Aα mutations in MCF10A cells

6.2.1. PP2A activity in PP2A-Aα mutants

6.2.2. PP2A-Aα mutations induce limited phenotype and alterations to cellular signalling using traditional culture methods

6.2.3. PP2A-Aα mutants produce a range of transformed phenotypes in 3D cultures

6.2.4. PP2A-Aα mutant proliferation rate in 3D culture
6.2.5. PP2A expression in mutant PP2A-Aα 3D acini by immunofluorescence ... 356

6.2.5.1. Lobular Acini .. 357

6.2.5.2. Elongated Acini ... 357

6.2.5.3. Invasive Acini .. 367

6.2.6. PP2A-Aα mutants demonstrate enhanced migration in wound healing assays ... 370

6.3. Discussion ... 376

7. DISCUSSION AND FUTURE DIRECTIONS ... 383

7.1. Characterisation of PP2A in breast cancer .. 383
7.2. Functional effects of altered PP2A expression in breast cancer 391

APPENDICES ... 403
Appendix 1 Vector Maps for DNA constructs used in this thesis 404
Appendix 2 Correlation of protein expression and mRNA expression for PP2A subunits ... 405
Appendix 3 Ki67 staining shows proliferation in sub-confluent breast and breast cancer cells, but not in confluent cells ... 409
Appendix 4 PP2A-A co-localises with β4 integrin in primary human mammary epithelial cells ... 411
Appendix 5 PP2A is not expressed in the nuclei in confluent breast and breast cancer cell lines ... 412
Appendix 6 PP2A-A co-localises with β4 integrin at the periphery of HMT-3522-T42 cells ... 414
Appendix 7 MDA-MB-231 cells did not spread on glass coverslips as on tissue culture plastic ... 415
Appendix 8 PP2A-A does not co-localise with proliferating cells in the outer cell layer of MCF10A acini ... 416
Appendix 9 PP2A-C protein expression in a breast cancer tissue array 418
Appendix 10 Negative control slides incubated with isotype matched antibodies for human tissue array analysis by immunohistochemistry ... 419
Appendix 11 PP2A A staining for nuclei .. 420
Appendix 12 Patient data for tissue arrays with PP2A subunit IHC scores424
Appendix 13 Regions of analysis for PP2A-A expression in breast tumour
arrays ..428
Appendix 14 PP2A-B’γ is highly expressed in plasma cells with considerable
levels of background staining ...429
Appendix 15 Apoptotic appearance of MCF10A cells with PP2A-Aα
expression suppressed below 20% ...430
Appendix 16 MCF10A cells infected with scrambled shRNA constructs have
an altered cellular morphology compared to untransduced
MCF10A cells ..431
Appendix 17 PP2A-Bα shRNA acini have small, but cleared lobes protruding
from the central acini ..432
Appendix 18 Proliferation rate of PP2A-Aα mutant acini demonstrating a
lobular phenotype ...433
Appendix 19 PP2A co-localises with integrins at the migrating edge of an
MCF10A wound healing assay ..436
Appendix 20 PP2A-Aα R418W mutants produced a few structures that were
very invasive in appearance ...437

REFERENCES ... 439
LIST OF FIGURES

Figure 1.1 Breast cancer.. 3
Figure 1.2: Progression of breast cancer requires multiple mutations 5
Figure 1.3 Estrogen receptor signalling ... 11
Figure 1.4 Epidermal growth factor pathway 14
Figure 1.5 The Ras/ERK signalling pathway 16
Figure 1.6 PI3K/Akt signalling pathway ... 18
Figure 1.7 Cross talk between signalling pathways with a role in breast cancer.... 22
Figure 1.8 Crystal Structure of PP2A .. 33
Figure 1.9 Structure of the PP2A-Bα holoenzyme 37
Figure 1.10 Structure of the PP2A-Bγ holoenzyme 38
Figure 1.11 Crystal Structure of PP2A showing locations of post translational modifications .. 45
Figure 1.12 PP2A regulation of the Ras/ERK signalling pathway 56
Figure 1.13 IEX-1 alters PP2A regulation of ERK by facilitating PP2A-Bγ phosphorylation ... 59
Figure 1.14 PP2A inhibits Akt signalling ... 61
Figure 1.15 PP2A as a molecular switch in Akt signalling 63
Figure 1.16 PP2A in p53 signalling ... 65
Figure 1.17 PP2A regulation of c-Myc ... 69
Figure 1.18 PP2A regulation of the Wnt signalling pathway 71
Figure 1.19 PP2A positively regulates focal adhesion formation and negatively regulates cellular migration ... 73
Figure 1.20 PP2A regulates multiple signalling pathways involved in the progression of breast cancer ... 79
Figure 1.21 Formation of mammary acini in 3D culture 95

Figure 3.1 Altered expression of PP2A subunit proteins in a panel of breast cancer cell lines ... 150
Figure 3.2 Altered expression of PP2A subunit proteins in a panel of breast cancer cell lines ... 151
Figure 3.3 Altered expression of PP2A subunit proteins in a panel of breast cancer cell lines ... 153
Figure 3.4 Altered expression of PP2A subunit mRNA in a panel of breast cancer cell lines by real-time PCR .. 157
Figure 3.5 Altered expression of PP2A subunit mRNA in a panel of breast cancer cell lines by real-time PCR .. 158
Figure 3.6 Altered expression of PP2A subunit mRNA in a panel of breast cancer cell lines by real-time PCR .. 160
Figure 3.7 PP2A-C post-translational modifications in a panel of breast cancer cell lines... 164
Figure 3.8 Altered expression of the PP2A binding proteins................................. 166
Figure 3.9 PP2A activity is increased in a number of breast cancer cell lines 167
Figure 3.10 PP2A-C subunit expression in primary human mammary epithelial cells... 169
Figure 3.11 PP2A subunit expression in primary human mammary epithelial cells... 170
Figure 3.12 Fluorescent secondary antibody controls ... 172
Figure 3.13 PP2A subunit expression in MCF10A cells .. 173
Figure 3.14 Confluent MCF10A cells cease to proliferate 174
Figure 3.15 PP2A subunit expression in confluent MCF10A cultures 175
Figure 3.16 PP2A subunit expression in T47D cultures .. 176
Figure 3.17 PP2A subunit expression in MCF7 cultures 177
Figure 3.18 PP2A subunit expression in HMT-3522-S2 cultures 179
Figure 3.19 PP2A subunit expression in HMT-3522-T42 cultures 180
Figure 3.20 PP2A subunit expression in MDA-MB-231 cultures 181
Figure 3.21 PP2A subunit expression in MDA-MB-468 cultures 183
Figure 3.22 PP2A subunit expression in DU4475 cultures................................. 184
Figure 3.23 MCF10A three dimensional culture model 186
Figure 3.24 Polarisation of MCF10A acini – Day 8 .. 187
Figure 3.25 Polarisation of MCF10A acini – Day 20 .. 188
Figure 3.26 3D Fluorescent secondary antibody controls..................................... 189
Figure 3.27 Breast cancer cell lines in 3D culture ... 190
Figure 3.28 PP2A expression in MCF10A acini – Day 8 191
Figure 3.29 PP2A-C expression co-localises with α6 integrin in MCF10A acini – Day 8 .. 192
Figure 3.30 PP2A-A expression co-localises with β4 integrin in MCF10A acini – Day 8 ... 193

Figure 3.31 PP2A-A expression co-localises with cleaved caspase 3 in MCF10A acini – Day 8 ... 194

Figure 3.32 PP2A expression in MCF10A acini – Day 14 ... 195

Figure 3.33 PP2A-A expression co-localises with cleaved caspase 3 in MCF10A acini – Day 14 ... 197

Figure 3.34 PP2A-Bα expression in MCF10A 3D acini – Day 14 198

Figure 3.35 PP2A-B’γ expression in MCF10A 3D acini – Day 14 199

Figure 3.36 PP2A expression in MCF10A acini – D20 .. 200

Figure 3.37 PP2A-C in the periphery of MCF10A acini – Day 20 201

Figure 3.38 PP2A-A protein expression in breast cancer tissue arrays 203

Figure 3.39 PP2A subunit protein expression in normal breast tissue 204

Figure 3.40 PP2A protein expression in breast cancer tissue arrays 205

Figure 3.41 Quantitation of PP2A protein expression in breast cancer 207

Figure 3.42 PP2A-A expression is reduced in some invasive ductal carcinomas compared to pre-invasive ductal carcinoma in situ or tumour and lymph node compared to normal tissue in a set of matched patient samples .. 208

Figure 3.43 PP2A-A expression is reduced in breast tumours compared to matched normal tissue .. 209

Figure 3.44 PP2A-A expression is reduced in tumour and lymph node compared to normal tissue in a set of matched patient samples .. 210

Figure 3.45 PP2A-A expression is reduced in tumour cells adjacent to normal ducts within an individual core .. 211

Figure 3.46 PP2A-C expression is variable in matched normal breast and breast tumours .. 214

Figure 3.47 PP2A expression compared with hormone receptor status 215

Figure 3.48 PP2A expression compared with signalling protein expression 216

Figure 3.49 PP2A expression is not altered in triple negative; ER, PR, ErbB2 negative breast cancer .. 217

Figure 3.50 PP2A expression does not correspond with progression of disease.... 218
Figure 4.1 Generation of SV40 and RAS expressing MCF10A cell lines 232
Figure 4.2 PP2A subunit expression in MCF10-ST cells 233
Figure 4.3 Generation of MCF10A cell lines expressing PP2A regulatory subunit
shRNA constructs .. 235
Figure 4.4 PP2A-Aα shRNA ... 236
Figure 4.5 Introduction of PP2A-Aα RNAi into pMKO-GFP vector 237
Figure 4.6 PP2A-Aα shRNA clones .. 239
Figure 4.7 Regulatory B subunit expression in MCF10A cells with knockdown
of PP2A subunits .. 241
Figure 4.8 Subcloning PP2A-Aα mutants ... 243
Figure 4.9 Subcloning PP2A-Aα wild-type and mutations 244
Figure 4.10 PP2A-Aα mutant clones ... 245
Figure 4.11 PP2A-Aα mutant clones ... 246
Figure 4.12 PP2A-Aα mutant clones ... 247
Figure 4.13 Comparison of PP2A-Aα mutants in MCF10A 249

Figure 5.1 MCF10A cells expressing ST proliferate without growth factors 259
Figure 5.2 ST expression does not induce anchorage independent growth 260
Figure 5.3 PP2A activity is not reduced in MCF10A cells expressing ST 262
Figure 5.4 ST expression does not affect Akt signalling in MCF10A cells 263
Figure 5.5 ST expression does not affect ERK signalling in MCF10A cells 266
Figure 5.6 ST expression in MCF10A 3D acini ... 267
Figure 5.7 Morphologies of 3D acini observed in untransduced MCF10A 3D
cultures ... 268
Figure 5.8 MCF10A-ST acini are larger, but more rounded than
MCF10A-Mut3 acini ... 269
Figure 5.9 MCF10A-Mut3 acini have reduced PP2A-A expression from day 14... 271
Figure 5.10 MCF10A-ST acini have reduced PP2A-A expression at all days
examined .. 272
Figure 5.11 PP2A-A expression reduces in MCF10A-Ras acini as cells become
more dispersed ... 273
Figure 5.12 MCF10A-Mut3 acini express PP2A-C in the periphery of acini and
also in the clearing lumen ... 274
Figure 5.13 MCF10A-ST acini express have reduced expression of PP2A-C 275
Figure 5.14 MCF10A-ST acini express active caspase 3 clearing the lumen......... 276
Figure 5.15 PP2A-C is expressed in the periphery of MCF10A-Ras acini, with some luminal expression ... 277
Figure 5.16 3D Fluorescent secondary antibody controls .. 278
Figure 5.17 Larger MCF10A-ST normal acini and MCF10A-Ras diffuse acini are the result of increased cellular proliferation 280
Figure 5.18 MCF10A cells with reduced regulatory B subunit expression proliferate at the same rate as vector controls 282
Figure 5.19 Suppression of regulatory B subunits does not induce anchorage independent growth ... 283
Figure 5.20 PP2A activity is increased in MCF10A cells with reduced PP2A-B’γ expression ... 284
Figure 5.21 ST expression does not affect Akt signalling in MCF10A cells 286
Figure 5.22 MCF10A-B’α shRNA cells demonstrate increased activation of ERK ... 287
Figure 5.23 B subunit shRNA cells have a ‘lobular’ phenotype in 3D culture 289
Figure 5.24 MCF10A acini expressing B subunit shRNA are larger, and have a lobular phenotype compared with vector control acini 290
Figure 5.25 Lobular acini are characterised by increased cellular proliferation 291
Figure 5.26 Vector control acini express PP2A-A as observed in untransduced MCF10A acini ... 293
Figure 5.27 Vector control acini express PP2A-C as observed in untransduced MCF10A acini ... 294
Figure 5.28 Knockdown of PP2A-B’γ in 3D cultures – Day 8 acini 295
Figure 5.29 PP2A-B’γ in 3D MCF10A-B’γ shRNA cultures – Day 14 acini 296
Figure 5.30 PP2A-A expression is reduced at the periphery of PP2A-B’γ shRNA MCF10A 3D acini ... 297
Figure 5.31 PP2A-A expression is reduced in PP2A-B’γ MCF10A acini with increased GFP expression, associated with transformed phenotype – Day 14. ... 298
Figure 5.32 PP2A-C expression is reduced at the periphery of PP2A-B’γ MCF10A acini ... 300
Figure 5.33 PP2A-B′α expression is very low in 3D MCF10A-B′α shRNA cultures – Day 14 acini

Figure 5.34 PP2A-A expression increases slightly with PP2A-B′α shRNA MCF10A acini development, but does not have any specific pattern of expression

Figure 5.35 PP2A-C expression is reduced in the periphery of PP2A-B′α shRNA MCF10A acini

Figure 5.36 PP2A-Bα expression is very low in 3D MCF10A-Bα shRNA cultures – Day 14 acini

Figure 5.37 PP2A-A expression is reduced in PP2A-Bα shRNA MCF10A acini at all timepoints

Figure 5.38 PP2A-C expression is reduced in the periphery of PP2A-Bα shRNA MCF10A acini

Figure 5.39 Partial suppression of PP2A-Aα induces growth factor independent proliferation

Figure 5.40 MCF10A cells with low levels of PP2A-Aα expression have reduced PP2A activity

Figure 5.41 Reduced expression of PP2A-Aα slightly increases the activation of Akt in response to EGF stimulation

Figure 5.42 MCF10A cell lines with reduced PP2A-Aα expression prolong ERK signalling

Figure 5.43 MCF10A cells with reduced PP2A-Aα expression produce smaller 3D acini

Figure 5.44 Morphology of MCF10A-Aα shRNA 3D acini

Figure 5.45 MCF10A-Aα shRNA #1 3D acini have reduced PP2A-A expression compared to vector control acini

Figure 5.46 MCF10A-Aα shRNA #4 3D acini have reduced PP2A-A expression compared to vector control acini

Figure 5.47 MCF10A-Aα shRNA #1 3D acini have similar PP2A-C expression to vector control acini at day 8, but has limited peripheral expression on later days

Figure 5.48 MCF10A-Aα shRNA #4 3D acini have very similar PP2A-C expression compared to vector control acini
Figure 5.49 PP2A-Aα shRNA #1 hollow acini express basal α6 integrin
Figure 5.50 PP2A-Aα shRNA #1 hollow acini do not express PP2A-A
Figure 5.51 PP2A-Aα shRNA #1 hollow acini do not express PP2A-C
Figure 5.52 PP2A-Aα shRNA #1 hollow acini do not express Ki67
Figure 5.53 PP2A-Aα shRNA #1 hollow acini are not apoptotic

Figure 6.1 Location of PP2A-Aα subunit mutations in the PP2A-B’γ holoenzyme
Figure 6.2 Location of PP2A-Aα subunit mutations in the PP2A-Bα holoenzyme
Figure 6.3 PP2A-Aα mutants demonstrate reduced PP2A activity
Figure 6.4 The PP2A-Aα E64G #4 mutant proliferates in the absence of growth factors
Figure 6.5 No changes in Akt signalling were observed in PP2A-Aα mutant cell lines
Figure 6.6 Increased endogenous ERK signalling is associated with some PP2A-Aα mutants
Figure 6.7 Morphology of PP2A-Aα mutant 3D acini
Figure 6.8 Morphology of PP2A-Aα mutant 3D acini
Figure 6.9 Morphologies of 3D acini observed in MCF10A PP2A-Aα subunit mutants
Figure 6.10 Morphologies of 3D acini observed in MCF10A PP2A-Aα subunit mutants
Figure 6.11 Quantitation of 3D acini morphology in MCF10A PP2A-Aα subunit mutants
Figure 6.12 PP2A-Aα mutations alter the size of 3D MCF10A acini
Figure 6.13 The lobular and invasive phenotypes have a higher proliferation rate than the elongated phenotype
Figure 6.14 PP2A-A expression is reduced over time in clones with a lobular phenotype
Figure 6.15 PP2A-A expression is low in lobular acini at day 20
Figure 6.16 PP2A-C expression is reduced over time in clones with a lobular phenotype
Figure 6.17 PP2A-C expression is reduced in the peripheral cells of lobular acini at day 20 ... 361
Figure 6.18 Lobular acini are polarised structures with active apoptosis 362
Figure 6.19 PP2A-A expression is low in elongated acini at day 20 363
Figure 6.20 PP2A-A expression is reduced in elongated acini at day 8 and 14 364
Figure 6.21 PP2A-C is highly expressed elongated acini 365
Figure 6.22 Elongated acini are polarised with some active apoptosis............... 366
Figure 6.23 PP2A-A is not expressed in invasive acini at day 20 368
Figure 6.24 PP2A-C expression is variable in invasive acini 369
Figure 6.25 MCF10A cells do not close wound healing assays via cell proliferation ... 371
Figure 6.26 MCF10A cells increase vimentin expression at the migrating edge of a closing wound .. 372
Figure 6.27 PP2A is upregulated at the migrating edge of an MCF10A wound healing assay .. 373
Figure 6.28 PP2A-Aα mutants that demonstrate an elongated or invasive phenotype in 3D culture migrate faster in a wound healing assay........ 375

Figure 7.1 Potential mechanisms of PP2A deregulation in breast cancer that present avenues of further investigation... 390
Figure 7.2 Role of PP2A in breast cancer... 392
Figure 7.3 A proposed mechanism for PP2A-Aα mutations in cellular adhesion and migration.. 396
LIST OF TABLES

Table 1.1 PP2A Subunits .. 34
Table 1.2 Substrate specificity of regulatory B subunits important for cancer signalling ... 42
Table 1.3 PP2A-A subunit mutations identified in human cancer 86

Table 2.1 Retroviral vectors used in this thesis ... 101
Table 2.2 shRNA vectors used in this thesis.. 102
Table 2.3 Sequencing Primers used in this thesis .. 109
Table 2.4 MCF10A medias .. 112
Table 2.5 PCR Primers used to amplify PP2A-Aα and PP2A-Aβ 123
Table 2.6 Quantitative Real Time PCR Primers .. 124
Table 2.7 Primary antibodies used for western blotting .. 128
Table 2.8 Secondary antibodies used for western blotting 130
Table 2.9 Primary antibodies used for immunofluorescence 133
Table 2.10 Secondary antibodies used for immunofluorescence 134

Table 3.1 Breast cell lines .. 146
Table 3.2 Summary of PP2A protein expression in breast cell lines compared with HMEC ... 155
Table 3.3 Summary of PP2A mRNA expression in breast cell lines compared with HMEC ... 162

Table 5.1 Summary of results for MCF10A cells with altered expression of PP2A subunits ... 326

Table 6.1 PP2A –Aα subunit mutations introduced into MCF10A cells 337
Table 6.2 Summary of results for MCF10A cells with mutant PP2A-Aα 377
Table 6.3 Summary of 3D phenotypes observed in MCF10A cells with mutant PP2A-Aα ... 378
Breast cancer is a worldwide health issue, and while many advances have been made in recent years, continued understanding of the development and progression of breast cancer is required to produce novel therapies to improve patient survival. Breast cancer is characterised by disruption in signalling pathways that control key cellular processes such as growth, proliferation and survival. Protein Phosphatase 2A (PP2A) is a key cellular signalling molecule that regulates numerous signalling pathways involved in breast cancer. PP2A is a trimeric protein complex, consisting of a structural subunit (PP2A-A), to which a catalytic subunit (PP2A-C) and a regulatory B subunit bind. PP2A is a proposed tumour suppressor, yet the role of PP2A in breast cancer has not been examined in detail to date. This thesis firstly examines PP2A expression in breast cancer cell lines and human breast cancer tissue. Dramatic reductions in expression of the PP2A-A and also a number of regulatory B subunits were observed in a panel of breast cancer cell lines compared to normal human mammary epithelial cells. In addition, a significant reduction in PP2A-A expression was identified in human breast tumours compared to normal mammary tissue. These results suggest that PP2A is important for the development or progression of breast cancer. In order to determine the functional role of PP2A in breast cancer, PP2A subunit expression was altered in a mammary breast epithelial cell line, MCF10A. A number of MCF10A cell lines were generated by transduction of shRNA directed to the PP2A-A or regulatory B subunits, or by expression of cancer-associated PP2A-A mutant genes. Functional analyses showed that shRNA knockdown or PP2A-A mutant expression had very little effect on MCF10A cells when grown using traditional two-dimensional cell culture techniques. However, in a more physiologically relevant three-dimensional culture method that maintains cellular polarisation and signalling with the basement membrane, a number of phenotypes indicative of cellular transformation were observed. MCF10A cells with reduced expression of regulatory B subunits, or PP2A-A mutations unable to bind regulatory B subunits, demonstrated increased cellular proliferation, MCF10A PP2A-A mutants that cannot interact with either the catalytic or regulatory B subunits displayed invasive properties. The results presented in this thesis provide clear evidence that PP2A is involved in breast cancer and presents a number of avenues for future investigation and potential novel therapies.
ACKNOWLEDGEMENTS

To all the people who have supported me throughout the production of this thesis I extend my sincere thanks and praise.

To my supervisors who have trained me, I thank you for the hard work you have put in to teaching me many new skills both in the laboratory and also for life. Alistair, thanks for being there in the beginning and modelling what it means to give your life to the most important things. To Severine, thank you for reading this thesis and providing helpful feedback. Nikki, thank you for being so patient with me, allowing me to make mistakes, have other priorities in my life and still be there always at the end of an email or phone call when I needed help. Thank you for not only teaching me laboratory skills, but also how to present well and most importantly logical flow. No matter where I end up in my life and career these are skills which I will continue to be grateful for. Thank you for being not only my supervisor, but also my friend. I hope you will remember me fondly and that we keep in touch as much as possible in this busy life.

To all of the lab friends I have made during the number of years I have been with you I thank you for your friendship, good ideas and willingness to share the load. I would especially like to thank Helen Carpenter for teaching me how to perform many lab tasks and for being so willing to lend a hand when I needed it. To people who have provided laboratory tools that make my life easier I am also thankful. Prof. Stephan Strack provided the mutant constructs I have utilised to produce this thesis and Prof. Rodger Daly, Prof. Leonie Ashman and Dr Rick Thorne provided breast cell lines. Thanks to Amanda Smith for just being around for a chat. Ben Copland and Fiona McDougall for optimising all the IHC so I could just come along and run my samples. Also pathologist Barbara Young for making sure my results were accurate. I pray that you might all have a blessed life and that is completely fulfilled.
To my church family, who have loved and supported me, prayed for me, encouraged me, challenged me and helped me grow over the last few years I thank you all. It is such a joy that there are far too many people to mention by name. It is so wonderful to know that one day my brothers and sisters will one day be all over Australia and the world, and yet we will still have a common life in Jesus.

Finally to my family, who are my joy and delight, my love and my comfort, I cannot thank you enough for supporting me through the journey that has been this thesis. Thank you Mum for staying up late, making me buckets of tea and lunch and dinner and...everything, for driving me around, giving me hugs and always being there for me no matter what. Thank you Dad for always supporting me whatever I am doing, I have always felt safe knowing you are there right behind me if ever I need you. John and Jenny you will always be so special to me, thank you Jenny for keeping me up to date and making me laugh so much. John I pray we will always be there to love and support each other no matter where life takes us. My darling Steve, thank you for marrying me during this crazy time, for not waiting, but giving me the true joy of being your wife. Thank you for the constant love, encouragement, teaching and leadership. As this chapter of our life closes, I look forward to what next God has in store for us with great joy.
PRESENTATIONS

Oral Conference Presentations:

Watt, LF. Altered protein phosphatase expression in breast cancer. 10 Best research showcase - University of Newcastle Faculty of Health.

Watt, LF. Protein phosphatase 2A in breast cancer. Hunter Medical Research Cancer Research Program seminar day, Newcastle.

Poster Conference Presentations:

Cottrell LF, Roselli S, Verrills NM (2010) Alterations in Protein Phosphatase 2A expression suggest a tumour suppressive role in breast cancer. Lowry Cancer symposium, Sydney, NSW.

Professional Awards and scholarships:

2007 Cancer Institute of NSW Research Scholar Award

2007 Honourable mention for the Campion Ma Playhoust award (Best oral presentation or poster by a student or any member under 30 year of age at Australian Society for Medical Research National Scientific Conference, Katoomba, NSW)

2010 Winner Faculty of Health 10 of the Best Research Showcase, University of Newcastle.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three dimensional</td>
</tr>
<tr>
<td>5-FU</td>
<td>Fluorouracil</td>
</tr>
<tr>
<td>ADH</td>
<td>Atypical ductal hyperplasia</td>
</tr>
<tr>
<td>BAD</td>
<td>Bcl2-agonist of death</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BME</td>
<td>Basement membrane extract</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CAMKII</td>
<td>Calcium/calmodulin-dependent protein kinase II</td>
</tr>
<tr>
<td>CHO cells</td>
<td>Chinese hamster ovary cells</td>
</tr>
<tr>
<td>CIP2A</td>
<td>Cancerous inhibitor of PP2A</td>
</tr>
<tr>
<td>CSF-1R</td>
<td>Colony-stimulating factor receptor</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’,6 Diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DCIS</td>
<td>Ductal carcinoma in situ</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DUSP</td>
<td>Dual specificity phosphatase</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>EMT</td>
<td>Epithelial to mesenchymal transition</td>
</tr>
<tr>
<td>ER</td>
<td>Estrogen receptor</td>
</tr>
<tr>
<td>ERE</td>
<td>Estrogen response element</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence activated cell sorting</td>
</tr>
<tr>
<td>FAK</td>
<td>Focal adhesion kinase</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GSK-3β</td>
<td>Glycogen synthase kinase-3β</td>
</tr>
<tr>
<td>HEAT (repeat)</td>
<td>Huntington-elongation-PP2A-A subunit-TOR</td>
</tr>
<tr>
<td>HEK-TER</td>
<td>Human embryonic kidney cells immortalised by addition of hTERT, SV40 LT and active Ras</td>
</tr>
</tbody>
</table>
HMEC Human mammary epithelial cell
HRT Hormone replacement therapy
htERT Human catalytic subunit of telomerase
IEX-1 Immediate early response gene X-1
kDa Kilodalton
KSR1 Kinase suppressor of Ras
LCIS Lobular carcinoma in situ
LCMT-1 Leucine Carboxyl Methyltransferase
LT SV40 Large T antigen
MAPK Mitogen activated protein kinase
MCF10A ecoR MCF10A cell line expressing the mouse ecotropic retroviral receptor
Mdm-2 Mdouble minute homologue 2
M-Leu309 Methylated PP2A-C at Leucine 309
MMP Matrix metalloproteinase
M-PP2A-C Methylated PP2A-C
mTOR Mammalian target of rapamycin
Mut3 SV40 Small T mutant unable to bind PP2A
NF-κB Nuclear factor of κB
NHMRC Nation health and medical research council
OA Okadaic acid
PBS Phosphate buffered saline
PCR Polymerase chain reaction
PDK1 3-phosphoinositide-dependent protein kinase 1
PH Plecstrin homology (domain)
PI3K Phosphoinositide 3-kinase
PIP2 Phosphatidylinositol (4,5)P2
PIP3 Phosphatidylinositol (3,4,5)P3
PKA Protein kinase A
PKR Protein kinase R
PME-1 Phosphatase methylesterase (specific for PP2A)
PP Ser/Thr protein phosphatase
PP2A Protein Phosphatase 2A
PP2A-A Structural subunit of PP2A
PP2A-C Catalytic subunit of PP2A
P-PP2A-C Phosphorylated PP2A-C
PPM Metallo-protein dependent phosphatase
PTEN Phosphatase and tensin homologue
PTP Protein Tyrosine Phosphatase
PTPA Phosphotyrosyl phosphatase activator
PyMT Polyoma virus middle T antigen
PyST Polyoma virus small T antigen
RPMI Roswell park memorial institute media
RTK Receptor tyrosine kinase
SAP Shrimp Alkaline Phosphatase
SDS Sodium dodecyl sulphate
SEM Standard error of the mean
Ser Serine
SERM Selective estrogen receptor modulator
shRNA Short hairpin RNA
siRNA Small interfering RNA
SMP Skim milk powder
ST SV40 Small T antigen
SV40 Simian virus 40
TBST Tris buffered saline-Tween 20 buffer
TH Tyrosine hydroxylase
Thr Threonine
Tyr Tyrosine
UICC Union for International Cancer Control
UTD Untrasduced (MCF10A) cells
WT Wildtype