Comparative Analysis of the Viability and Functional Performance of Mono- and Multi-Species Probiotic Cultures in a Non-Dairy Food Matrix

By

Mahta Moussavi
MSc (Food Science)

A thesis submitted for the degree of Doctor of Philosophy

School of Environmental and Life Sciences
Faculty of Science and Information Technology
The University of Newcastle, New South Wales, Australia

March 2012
STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Signed……………………… Date ………………..

Mahta Moussavi
School of Environmental and Life Sciences
The University of Newcastle
New South Wales
Australia
This thesis was made possible by the many great people that have supported me throughout the period of my candidature. First and foremost I would like to thank Dr Michelle Adams, my supervisor Dr Surinder Baines and co-supervisor Dr Craig Evans, for their support, encouragement, and interest and for their time spent reading and editing drafts of this thesis.

Special thanks to Associate Professor Hugh Dunstan, Professor Scott Holmes and Mrs Karen Kincaid for their ongoing support.

I would also like to express my gratitude to Mr Kim Colyvas for his assistance with statistical analyses, Mrs Stephanie Van Horck for her technical support, Mr David Phelan for his assistance with electron microscopy and Ms Kelly Marquardt for her help with cell culture.

I acknowledge the assistance provided to me by the Australian federal government and the University of Newcastle via the provision of my Endeavour International Postgraduate Research Scholarship and University of Newcastle Postgraduate Research Scholarship.

A huge thank you to Ha, Lidija, Senaka and Justin for so many things but mostly for being such good friends.

I would like to thank my family for their continued love, support and encouragement over the years.

More than anybody I would like to thank Javad for all his patience, support and love.
Publications arising from this thesis

Peer reviewed journal paper

Conference presentations

1. Moussavi, Mahta, Baines Surinder Kaur, Adams Michelle Catherine. Intestinal epithelial cell adhesion characteristics of probiotic combinations included in orange juice. Proceedings of Annual Scientific Meeting of the Nutrition Society of Australia, 34th Annual Scientific Meeting, Perth, Australia, Nov 30-Dec 4, 2010

Table of contents

Table of contents .. ix
List of abbreviations ... xxi
Abstract ... xxiii

Chapter I: Introduction ... 1
 1.1 Overview ... 3
 1.2 Research objectives and hypotheses .. 4
 1.3 Thesis Outline ... 5

Chapter II: Literature Review .. 7
 2.1 Probiotic definition ... 9
 2.2 Probiotic microorganisms .. 10
 2.2.1 The genus *Lactobacillus* ... 12
 2.2.2 The genus *Bifidobacterium* ... 14
 2.2.3 The genus *Propionibacterium* .. 16
 2.2.4 *Saccharomyces boulardii* ... 17
 2.3 Selection criteria for probiotics .. 18
 2.4 Health benefits of probiotics ... 19
 2.4.1 Lipid modulation ... 20
 2.4.2 Modulation of the immune system .. 21
 2.4.3 Prevention/treatment of infections ... 25
 2.4.4 Amelioration of lactose maldigestion ... 26
 2.4.5 Management of allergy .. 27
 2.4.6 Prevention of cancer ... 29
 2.5 Probiotic products ... 32
 2.5.1 Dairy products ... 34
 2.5.1.1 Probiotic yoghurt ... 34
 2.5.1.2 Probiotic ice cream .. 35
 2.5.1.3 Probiotic cheese ... 35
 2.5.2 Probiotic fruit and vegetable juice ... 37
 2.5.2.1 Fermented fruit/vegetable juice-based probiotics beverages 37
 2.5.2.2 Non-fermented fruit/vegetable juice-based probiotic drinks 38
 2.5.3 Probiotic straw and cap ... 127
 2.5.4 Others .. 127
 2.6 Probiotic survival in food matrixes .. 128
 2.6.1 Stress adaptation .. 128
 2.6.2 Microencapsulation .. 129
2.6.2.1 Methods of microencapsulation ... 130
2.6.2.1.1 Spray drying ... 130
2.6.2.1.2 Extrusion ... 131
2.6.2.1.3 Emulsion ... 131
2.6.3 Prebiotics ... 136
2.7 Probiotic combinations .. 138
2.8 Effect of fruit juice as carrier matrix on probiotic survival and functional performances ... 141
2.8.1 Survival ... 141
2.8.2 Acid and bile tolerance ... 142
2.8.3 Adhesion ... 143
2.8.4 Immunomodulation .. 145
2.9 Thesis research goal ... 145

Chapter III: Bacterial Growth Interactions and Intestinal Epithelial Cell Adhesion Characteristics of Probiotic Combinations ... 146
3.1 Summary ... 148
3.2 Introduction .. 149
3.3 Materials and methods ... 153
3.3.1 Bacterial strains and growth conditions .. 153
3.3.2 Chemicals and reagents .. 153
3.3.3 Co-culture growth interactions ... 153
3.3.4 Caco-2 cell line ... 155
3.3.5 In vitro bacterial adhesion assay .. 155
3.3.6 Scanning Electron Microscopy ... 156
3.3.7 Statistical analysis .. 156
3.4 Results ... 157
3.4.1 Growth interactions and viability of probiotics in mixed cultures 157
3.4.2 Patterns of pH change in mono- and co-culture growth media 160
3.4.3 Adhesion of probiotics in mono- and co-culture to the intestinal epithelial cell line Caco-2 ... 162
3.5 Discussion ... 167
3.5.1 Growth and viability interactions of probiotics in mixed cultures 167
3.5.2 Adhesion characteristics of probiotics in mono- and co-culture to intestinal epithelial cell line Caco-2 ... 169
3.6 Conclusion .. 171

Chapter IV: Survival of Probiotic Mono-Cultures and Multispecies Combinations During Storage in Orange Juice and Bottled Drinking Water ... 172
4.1 Summary ... 174
4.2 Introduction .. 175
Chapter V: An In Vitro Study on Gastro-Intestinal Tolerance of Probiotic Combinations Incorporated into Orange Juice

5.1 Summary .. 215
5.2 Introduction ... 216
5.3 Materials and methods ... 219
 5.3.1 Chemicals and reagents .. 219
 5.3.2 Bacterial cultures and growth conditions ... 219
 5.3.3 Orange juice ... 219
 5.3.4 Preparation of probiotic orange juice .. 219
 5.3.5 Tolerance to the simulated gastric conditions ... 219
 5.3.6 Effect of carrier matrix on the viability of probiotics 219
 5.3.7 Effect of storage temperature (4 or 23°C) on the viability of probiotics in drinking water ... 220
 5.3.8 Statistical analyses ... 220
 5.4 Results .. 220
 5.4.1 Strain dependent variation in probiotic viability ... 220
 5.4.2 Effect of carrier matrix on the viability of probiotics 220
 5.4.3 Impact of pulp on the viability of probiotics in orange juice 220
 5.4.4 Effect of storage temperature (4 or 23°C) on the viability of probiotics in drinking water ... 220
 5.4.5 Probiotic combinations and individual strain viability 220
 5.4.6 pH and Brix changes in orange juices .. 220
 5.4.7 Shelf life of the product ... 220
 5.4.8 Summary of key findings .. 220
 5.5 Discussion .. 220
 5.5.1 Strain and carrier dependent variation in the probiotic viability of individual strains 221
 5.5.2 Viability of individual strains in the presence of other probiotics 221
 5.5.3 Variation in viability of probiotics in drinking water under different storage temperatures .. 221
 5.5.4 Impact of pulp on the viability of probiotics ... 221
 5.5.5 pH and Brix changes in orange juices .. 221
 5.6 Conclusion ... 221
5.3.6 Tolerance to the simulated intestinal conditions ... 220
5.3.7 Statistical analyses .. 222
5.4 Results ... 223
 5.4.1 Strain dependent variation and effect of orange juice and refrigerated storage on
 the gastro-intestinal tolerance of probiotics ... 223
 5.4.2 Effect of probiotic combinations on gastro-intestinal tolerance of individual
 strains ... 227
5.5 Discussion ... 232
5.6 Conclusion ... 236

Chapter VI: Intestinal Epithelial Cell Adhesion Characteristics of Probiotic Mono-
Cultures and Combinations Incorporated into Orange Juice 237
6.1 Summary .. 239
6.2 Introduction ... 240
6.3 Materials and methods ... 244
 6.3.1 Chemicals and reagents .. 244
 6.3.2 Bacterial cultures and growth conditions .. 244
 6.3.3 Orange juice .. 244
 6.3.4 Preparation of probiotic orange juice ... 244
 6.3.5 In Vitro bacterial adhesion assay .. 244
 6.3.6 Statistical analyses .. 245
6.4 Results .. 246
 6.4.1 Strain variability in adhesion rates and the effect of cold storage in orange juice
 246
 6.4.2 Adhesion rates and the effect of combining probiotics 248
6.5 Discussion ... 256
6.6 Conclusion .. 262

CHAPTER VII: Impact of Orange Juice as a Probiotic Carrier Matrix on in-vitro
Immunomodulatory Effect of Probiotic Combinations 263
7.1 Summary .. 265
7.2 Introduction ... 267
 7.2.1 CXCL8/IL-8 ... 267
 7.2.2 IL-6 ... 272
 7.2.3 TNF-α .. 275
7.3 Materials and methods .. 278
 7.3.1 Chemicals and Reagents ... 278
 7.3.2 Bacterial cultures and growth conditions .. 278
 7.3.3 Orange juice .. 278
 7.3.4 Preparation of probiotic orange juice .. 278
 7.3.5 Intestinal epithelial cell line and growth conditions ... 278
7.3.6 Intestinal epithelial cell line responsiveness ... 278
7.3.7 Effect of probiotics on pro-inflammatory stimulant induced cytokine production by Caco-2 cells .. 279
7.3.8 Statistical Analyses .. 281
7.4 Results .. 282
 7.4.1 Effect of probiotic preparations on induced IL-8 production by Caco-2 cells .. 282
 7.4.1.1 Impact of probiotics on LPS induced IL-8 production by Caco-2 cells 284
 7.4.1.2 Effect of probiotics on TNF-α induced IL-8 secretion by Caco-2 cells. 287
 7.4.1.3 Effect of probiotics on IL-1β induced IL-8 secretion by Caco-2 cells .. 291
 7.4.2 Effect of probiotic preparations on induced IL-6 production by Caco-2 cells .. 295
 7.4.2.1 Effect of probiotics on LPS induced IL-6 secretion by Caco-2 cells.... 297
 7.4.2.2 Effect of probiotics on IL-1β induced IL-6 secretion by Caco-2 cells .. 300
 7.4.3 Effect of probiotics on IL-1β induced TNF-α secretion by Caco-2 cells........ 305
 7.4.4 Summary of key findings ... 308
7.5 Discussion ... 310
 7.5.1 IL-8 .. 310
 7.5.2 IL-6 .. 313
 7.5.3 TNF-α ... 314
7.6 Conclusion .. 316

Chapter VIII: Overall Conclusions and Future Research Directions 317
8.1 Overall conclusions ... 319
8.2 Future research directions ... 327

References .. 329

Appendices .. 399
List of tables

Table 2.1: Microorganisms used as probiotics...11
Table 2.2: Examples of recent in vivo studies addressing the beneficial health effects of some commercial probiotic Lactobacillus strains...13
Table 2.3: Examples of recent in vivo studies addressing the beneficial health effects of some commercial probiotic Bifidobacterium strains...15
Table 2.4: Selection criteria of probiotic organisms for human use19
Table 2.5: Examples of probiotic effects on innate immunity...22
Table 2.6: Examples of probiotic effect on adaptive immunity...23
Table 2.7: Examples of commercial fruit juice-based probiotic drinks............................39
Table 2.8: Encapsulation of probiotic microorganisms by different methods.................133
Table 2.9: Summary of in vitro works on the beneficial effect of probiotic combinations compared with single strains...139
Table 2.10: Summary of in vivo works on the effect of probiotic combinations in the management of disorders/health problems compared with single strains..............140

Table 4.1: Qualitative summary of individual strain viability in various probiotic combinations, expressed in terms of the viability in combination relative to viability as a mono-culture in the same carrier. (-) = decreased; (+) = increased; (N) = not affected..197

Table 4.2: pH values of probiotic OJs (with and without pulp) before and after 56 days of storage at 4°C. ..199

Table 4.3: Total soluble solids contents (Brix) of probiotic OJs (with and without pulp) before and after 56 days of storage at 4°C. ...200

Table 4.4: Shelf-life (in Days) of the probiotic drinks in terms of cell counts above the minimum effective level of viable microorganisms (≥10^6 CFU/mL). The colour scheme groups the shelf-lives into 3 categories: blue, >6 wks; yellow, 4-6 wks and pink, 0-4 wks. ..202

Table 6.1: Qualitative summary of the viability and adhesion percentage of individual strains either alone or in combinations during 30 days of exposure to OJ, expressed in terms of the viability and adhesion percentage relative to those of the control (PBS, day 0). (-) = decreased; (+) = increased; (N) = not affected ..255

Table 7.1: Summary of published findings on the effect of probiotic strains on non-stimulated and stimulated IL-8 secretion by IECs ...270
Table 7.2: Summary of published findings on the effect of probiotic strains on non-stimulated and stimulated IL-6 secretion by IECs .. 274

Table 7.3: Summary of published findings on the effect of probiotic strains on non-stimulated and stimulated TNF-α secretion by IECs .. 276

Table 7.4: Summary of experimental conditions applied in the measurement of cytokines produced by Caco-2 cells, including the stimulants and probiotic preparations applied, and the storage time over which the relevant measurements were taken. .. 280

Table 7.5: Effect of duration of refrigerated storage on ratio percentage change of probiotic effect on IL-6 production .. 304

Table 8.1: Effect of probiotic preparations at baseline (Day 0) and during refrigerated storage in OJ, on cytokine secretion by Caco-2 cells................................. 325
List of figures

Figure 2.1: The treatment targets of probiotic functional foods in allergic disease (Adopted from (Isolauri, 2001)) ... 28

Figure 2.2: Flow diagram of encapsulation of bacteria by the extrusion and emulsion techniques. Adapted from Krasaekoopt et al., (2003) 132

Figure 3.1: Comparative growth and viability patterns during 14 days incubation of mono- and co-cultures of probiotics in GYEL medium at 33 °C. □, viable cell counts of monocultures of Lactobacillus strains or Bb; ■, viable cell counts of Lactobacillus strains or Bb in combination with PJ; ○, viable cell counts of the PJ mono-culture; ●, viable cell counts of PJ in combination with lactobacilli and Bb. .. 159

Figure 3.2: Changes in pH during 14 days incubation of mono- and co-cultures of probiotics in GYEL medium at 33 °C. □, pH of mono-cultures of Lactobacillus strains and Bb; ○, pH of PJ alone; ▲, pH of co-cultures. .. 161

Figure 3.3: Percentage adhesion of LC, LG, LP, LR and Bb, either alone or in combination with PJ to Caco-2 human intestinal epithelial cells. In combinations, the first listed bacterium has been counted. Data represent means ± standard error of two independent experiments, each performed in triplicate. 163

Figure 3.4: Percentage adhesion of PJ either alone or in combination with LC, LG, LP, LR or Bb to Caco-2 human intestinal epithelial cells. Data represent means ± standard error of two independent experiments, each performed in triplicate. 164

Figure 3.5: Scanning electron micrographs showing adherence of selected probiotic strains to Caco-2 cells. a, PJ; b, LR; c, PJ + LG; d, PJ + LP. .. 165

Figure 4.1: Viable cell counts of mono-cultures of each probiotic strain in pulp-free OJ and BW over 8 weeks of storage at 4°C. ... 185

Figure 4.2: Scanning electron micrographs showing differences between the morphology of PJ cells, both in mono-culture (top row) and in combination with LG (bottom) after 3 (left) and 8 weeks (right micrographs) of storage in OJ. 186

Figure 4.3: Comparison of the viability of mono-cultures of probiotics examined in pulp-free OJ and BW over 8 weeks of storage at 4°C. 188

Figure 4.4: Viable cell counts of probiotics in OJ with (■) and without (○) pulp over 8 weeks of storage at 4°C. In combinations, the counts of the first listed bacterium have been reported. ... 190

Figure 4.5: SEM micrographs of probiotics scattered among pulp particles in OJ. 191

Figure 4.6: Viable cell counts of probiotics in BW over 8 weeks of storage at (■) 4 °C and (○) 23 °C. .. 193
Figure 4.7: Viabilities of the four probiotics, both in mono-culture and in the designated combinations, in pulp-free OJ and BW over 8 weeks of storage at 4°C.

Figure 5.1: Schematic diagram outlining details of the preparation of simulated gastric and intestinal juices, and the in vitro gastro-intestinal tolerance assay procedure.

Figure 5.2: Viability losses of individual probiotics incorporated into PBS or orange juice at baseline, after exposure to simulated gastric juice (SGJ) for 20 min at 37°C or simulated intestinal juice (SIJ) for 180 min at 37°C.

Figure 5.3: Gastro-intestinal tolerance of individual strains of LG, LR, Bb and PJ included in OJ during 30 days of refrigerated storage. The results are presented as reduction in the number of viable probiotic cells after exposure to SGJ and SIJ (expressed as Log CFU/mL). □ probiotic viability loss in OJ after exposure to SGJ; ■ probiotic viability loss in PBS after exposure to SGJ; Δ probiotic viability loss in OJ after exposure to SIJ; ▲ probiotic viability loss in PBS after exposure to SIJ.

Figure 5.4: Variation in the gastro-intestinal tolerance of LG, in mono-culture and in combination with Bb and/or PJ, during 30 days of refrigerated storage in OJ. The results are presented as reduction in the number of viable probiotic cells after exposure to SGJ and SIJ (expressed as Log CFU/mL). □ probiotic viability loss in OJ after exposure to SGJ; ■ probiotic viability loss in PBS after exposure to SGJ; Δ probiotic viability loss in OJ after exposure to SIJ; ▲ probiotic viability loss in PBS after exposure to SIJ.

Figure 5.5: Variation in the gastro-intestinal tolerance of LR, in mono-culture and in combination with Bb and/or PJ, during 30 days of refrigerated storage in OJ. The results are presented as reduction in the number of viable probiotic cells after exposure to SGJ and SIJ (expressed as Log CFU/mL). □ probiotic viability loss in OJ after exposure to SGJ; ■ probiotic viability loss in PBS after exposure to SGJ; Δ probiotic viability loss in OJ after exposure to SIJ; ▲ probiotic viability loss in PBS after exposure to SIJ.

Figure 5.6: Variation in the gastro-intestinal tolerance of Bb, in mono-culture and in combination with LG or LR and/or PJ, during 30 days of refrigerated storage in OJ. The results are presented as reduction in the number of viable probiotic cells after exposure to SGJ and SIJ (expressed as Log CFU/mL). □ probiotic viability loss in OJ after exposure to SGJ; ■ probiotic viability loss in PBS after exposure to SGJ; Δ probiotic viability loss in OJ after exposure to SIJ; ▲ probiotic viability loss in PBS after exposure to SIJ.

Figure 5.7: Variation in the gastro-intestinal tolerance of PJ, in mono-culture and in combination with LG or LR and/or Bb, during 30 days of refrigerated storage in OJ. The results are presented as reduction in the number of viable probiotic cells after exposure to SGJ and SIJ (expressed as Log CFU/mL). □ probiotic viability loss in OJ after exposure to SGJ; ■ probiotic viability loss in PBS after exposure to SGJ; Δ probiotic viability loss in OJ after exposure to SIJ; ▲ probiotic viability loss in PBS after exposure to SIJ.
Figure 6.1: Viability (□) and adhesion rate (●) of individual strains of LG, LR, Bb and PJ during exposure to orange juice (OJ) stored at 4°C for 30 days. ...247

Figure 6.2: Viability (□) and adhesion rate (●) of LG either alone or in combination with Bb and/or PJ during exposure of the probiotics to orange juice (OJ) stored at 4°C for 30 days..248

Figure 6.3: Viability (□) and adhesion rate (●) of LR either alone or in combination with Bb and/or PJ during exposure of the probiotics to orange juice (OJ) stored at 4°C for 30 days..249

Figure 6.4: Viability (□) and adhesion rate (●) of Bb either alone or in combinations with LG or LR and/or PJ during exposure of the probiotics to orange juice (OJ) stored at 4°C for 30 days ..251

Figure 6.5: Viability (□) and adhesion rate (●) of PJ either alone or in combinations with LG or LR and/or Bb during exposure of the probiotics to orange juice (OJ) stored at 4°C for 30 days..253

Figure 7.1: Time dependent dose response curves of LPS- (left) and TNF-α- (right) induced IL-8 production in Caco-2 cells ...283

Figure 7.2: Effect of probiotic preparations at baseline (D0) and after 10 days of refrigerated storage in orange juice (D10) on both non-stimulated (white bars) and LPS induced (blue bars) IL-8 secretion by Caco-2 cells. IL-8 production is expressed as mean (pg/mL) ± SE...285

Figure 7.3: Effect of probiotic preparations before and after storage of the probiotics in orange juice at low temperature (4°C) on both non-stimulated and LPS induced IL-8 secretion by Caco-2 cells. IL-8 production is expressed as mean (pg/mL) ± SE...286

Figure 7.4: The effect of probiotic preparations at baseline (D0), and after 10, 20 and 30 days of refrigerated storage in orange juice, on both unstimulated (white bars) and TNF-α induced (blue bars) IL-8 secretion by Caco-2 cells. IL-8 production is expressed as mean (pg/mL) ± SE...289

Figure 7.5: Effect of duration of combined exposure of probiotic bacteria to orange juice and low storage temperature (4°C) on TNF-α induced IL-8 secretion by Caco-2 cells ..290

Figure 7.6: Effect of probiotic preparations at baseline (D0), and after 10, 20 and 30 days of refrigerated storage in orange juice on both unstimulated (white bars) and IL-1β induced (blue bars) IL-8 secretion by Caco-2 cells. IL-8 production is expressed as mean (pg/mL) ± SE...293

Figure 7.7: Effect of duration of combined exposure of probiotic bacteria to orange juice and low storage temperature (4°C) on IL-1β induced IL-8 secretion by Caco-2 cells ..294
Figure 7.9: Effect of probiotic preparations at baseline (D0) and after 10 days of refrigerated storage in orange juice (D10) on unstimulated (white bars) and LPS induced (blue bars) IL-6 secretion by Caco-2 cells. IL-6 production is expressed as mean (pg/mL) ± SE. .. 298

Figure 7.10: Effect of duration of combined exposure of probiotic bacteria to orange juice and low storage temperature (4°C) on unstimulated and LPS induced IL-6 secretion by Caco-2 cells. IL-6 production is expressed as mean (pg/mL) ± SE. .. 299

Figure 7.11: Effect of probiotic preparations at baseline (D0) and after 10, 20 and 30 days of refrigerated storage in orange juice on unstimulated (white bars) and IL-1β induced (blue bars) IL-6 secretion by Caco-2 cells. IL-6 production is expressed as mean (pg/mL) ± SE. .. 302

Figure 7.12: Effect of duration of combined exposure of probiotic bacteria to orange juice and low storage temperature (4°C) on IL-1β induced IL-6 secretion by Caco-2 cells. .. 303

Figure 7.13: Effect of single probiotic strains at baseline (D0) and after 10, 20 and 30 days of refrigerated storage in orange juice, on unstimulated (white bars) and IL-1β induced (blue bars) TNF-α secretion by Caco-2 cells. TNF-α production is expressed as mean (pg/mL) ± SE. .. 306

Figure 7.14: Effect of duration of combined exposure of probiotic bacteria to orange juice and low storage temperature (4°C) on IL-1β induced TNF-α secretion by Caco-2 cells. .. 307
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cell</td>
</tr>
<tr>
<td>EIA</td>
<td>Enzyme immuno-assay</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immuno sorbent assay</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and agriculture organisation</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastro-intestinal tract</td>
</tr>
<tr>
<td>IBD</td>
<td>Inflammatory bowel disease</td>
</tr>
<tr>
<td>IBS</td>
<td>Irritable bowel syndrome</td>
</tr>
<tr>
<td>IEC</td>
<td>Intestinal epithelial cells</td>
</tr>
<tr>
<td>IgA</td>
<td>Immunoglobulin A</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-γ</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1β</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin-8</td>
</tr>
<tr>
<td>LAB</td>
<td>Lactic acid bacteria</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LTA</td>
<td>Lipoteichoic acid</td>
</tr>
<tr>
<td>MRD</td>
<td>Maximum recovery diluent</td>
</tr>
<tr>
<td>MRS</td>
<td>deMan, Rogosa Sharp</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>pg</td>
<td>Picogram</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell park memorial institute medium</td>
</tr>
<tr>
<td>SCFA</td>
<td>Short chain fatty acid</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor-α</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organisation</td>
</tr>
</tbody>
</table>
Abstract

Probiotics are increasingly being included into food products in order to develop functional foods with health promoting effects, but have to date been exploited mainly in dairy products. Development of non-dairy probiotic foods such as fruit juices may provide consumers with greater choice and be attractive to those who can not eat dairy foods. Orange juice presents as an ideal vehicle for probiotic delivery as it is the most popular fruit beverage worldwide, and like other fruit juices has a short gastro-intestinal transit time which reduces exposure of probiotics to harsh environment of the stomach.

Since probiotic organisms vary in the type and level of their health promoting effects, it is likely that probiotic combinations would offer the consumer more benefit than single strains. Effective design of functional foods containing probiotic combinations, must take into consideration the likely occurrence and impact of potential interactions between individual species within a proposed combination, and between the probiotic and the carrier matrix. The main objectives of the current study were 1) to identify the effect of combining probiotics on their viability and adhesion to intestinal cells and 2) to examine the combined effect of exposure of probiotics to orange juice and low temperatures during refrigerated storage, on their viability and functional properties.

The initial study of long-term (14 days) growth interactions of several lactobacilli and Bifidobacterium animalis subsp lactis Bb12 (Bb), both alone and in co-culture with Propionibacterium jensenii 702 (PJ), revealed that growth patterns of Lactobacillus strains were not adversely affected by the presence of PJ, whereas lactobacilli strongly inhibited growth of PJ. In the co-culture of Bb and PJ, a significant enhancement of the growth of both bacteria was observed. The effect of combining probiotics on their adhesion to human intestinal epithelial Caco-2 cells was only evident in the case of Lb. casei 01 and Lb. rhamnosus GG (LG) which exhibited a decrease in adhesion rate in the presence of PJ.

The viability of LG, Lb. reuteri ATCC 55730 (LR), Bb and PJ, both individually and as 2- or 3- multispecies combinations, were then monitored in orange juice (OJ) (with and without 20% pulp) as well as bottled drinking water (BW) over 8 weeks of refrigerated
(4°C) and non-refrigerated storage (only for BW). Lactobacilli remained viable in higher numbers in OJ relative to that observed in BW under refrigeration. In contrast, a better outcome was observed for Bb and PJ in BW. Combining of probiotic species was observed to affect individual strain viability. Presence of pulp did not affect the viability of probiotics in OJ, while storage of BW at room temperature had an adverse effect on viability of all probiotics except of PJ, relative to storage under refrigeration.

Influence of combined exposure to OJ and refrigerated storage of the same probiotic preparations on their in vitro gastro-intestinal tolerance, adhesion to intestinal epithelial cells and immunomodulatory effects was then investigated at 10-day intervals during one month of storage. Suspension in OJ did not adversely affect the tolerance of any of the strains examined to simulated gastric juice (SGJ), with the tolerance of LG and PJ considerably enhanced relative to that observed in PBS, but did appear to impair the tolerance of lactobacilli and PJ to simulated intestinal juice (SIJ) at the baseline. High tolerance to SGJ was maintained throughout the storage period. The tolerance of both Bb and PJ to SIJ remained relatively constant during storage. Combining with both Bb and PJ enhanced the tolerance of the lactobacilli to SIJ with little impact on Bb, but adversely affected PJ in all combinations.

The adhesion rate of LG remained relatively constant in all preparations along with the viability during storage. In contrast with LG, adhesion rates and viabilities of other probiotics exhibited variation in relation to strain, presence of other microorganisms, and storage duration. In terms of both viability and adhesion rate, the preparations that provided the best outcomes for all constituents were LG and LR-PJ.

With the exception of LG, all probiotic preparations significantly enhanced non-stimulated interleukin-8 (IL-8) but not interleukin-6 (IL-6) or tumor necrosis factor-α (TNF-α) secretion by Caco-2 cells. Probiotic preparations enhanced Escherichia coli lipopolysaccharide (LPS) induced IL-8 release at baseline however this effect was not evident in all preparations at day 10. With the exception of LG, all probiotic preparations enhanced TNF-α induced IL-8 secretion towards day 20 after which it returned to the
control level. In contrast, probiotic preparations significantly reduced IL-1β induced IL-8 secretion at baseline, with no further effect evident during storage. The relative probiotic effect on IL-1β and TNF-α induced IL-8 secretion showed an upward and downward trend respectively over the storage period. Probiotic preparations did not affect LPS or IL-1β induced secretion of IL-6 up to 10 days of storage, while thereafter some of them exhibited variable effects on IL-1β induced IL-6 secretion. Compared to baseline (day 0), the effect of all four probiotic strains on IL-1β induced TNF-α production was found to decrease significantly by day10 of the storage period.

In conclusion, the results provided evidence of variation between individual strains in terms of their viability and intestinal adhesion capacity, and for the same strain when combined with different probiotics. When included in bottled drinking water and orange juice, the viabilities and functional properties of the probiotic preparations were further affected by the duration of their exposure to the carrier matrix and refrigerated storage. Such effects should be considered when formulating probiotic products, and further research is recommended to confirm the observed in vitro functional effects in vivo.