The Role of *Alloiococcus otitidis* in Otitis Media

Christopher I.J. Ashhurst-Smith

December 2011

This thesis is presented for the degree of Doctor of Philosophy

Department of Biomedical Sciences and Pharmacy
The University of Newcastle
Declaration

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University library, being made available for loan and photocopying subject to the provisions of the copyright Act 1968.

__
Christopher Ian James Ashhurst-Smith
Acknowledgements

The completion of this thesis would not have been possible without generous time, expertise and guidance from my Supervisor Caroline Blackwell to whom I will always be most grateful. Caroline’s friendly approach to supervision, despite serious health challenges, ensured that motivation and enthusiasm for the study were maintained at a high level. I would also like to thank my Co-Supervisor, A/Prof. Stephen Graves for frequent encouragement and many valued suggestions.

I would like to thank collaborators who have helped complete certain technical aspects of this thesis beyond my field of expertise. For chapters 5 and 6, Sophia Moscovis kindly provided training for the cytokine assays and performed some of the cytokine measurements. The technical skills of Christine Burns were essential for the SDS-PAGE work in Chapter 6 and also assisted with cytokine measurement. Karla Lemmert kindly organised use of the Luminex instrument between busy periods of routine diagnostic work and Esther Liet commenced preliminary molecular studies on the clinical samples.

Thanks to John Stuart, Senior Paediatrician, John Hunter Children’s Hospital, for encouragement and helping to maintain a sound level of clinical focus during the study. Thanks also goes to the ENT surgeons, Paul Walker, Malcolm Robilliard, Robert Eisenberg and Robert Dorrington who participated in the study under the pressure of managed theatre schedules.

Special thanks to Sharron Hall, our under-acknowledged person who worked behind the scenes. Her skills enabled smooth running of funding and ethics applications; patient recruitment/liaison/retention; specimen collection/transport/storage; and tactfully negotiated potential political obstacles which surface during clinical studies.
Thanks to staff at the collection clinics and theatres at John Hunter, Kurri Kurri and Tamworth Hospitals, and also at Awabakal, Biripi, Cabarita and Towabba Aboriginal Medical Services.

Generous funding was provided by: The Hunter Medical Research Institute and The John Hunter Children’s Hospital Research Foundation; A/Prof. Stephen Graves and Dr. Rodney Givney allocated funds from the Hunter Area Pathology Microbiology Trust; The University of Newcastle, Faculty of Health, Grant-In-Aid award.

Thanks also goes to the librarians at the Gardner Library, John Hunter Hospital for efficiently obtaining some of the obscure articles; Anne Griffith for valued help with formatting, printing assistance and preparation of the final document, and thanks to Huw Ashhurst-Smith for computer tuition. Finally, I would like to thank my wife Margo who substantially increased her burden of domestic and family duties during this endeavour.
<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introduction and Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2</td>
<td>Isolation of Alloioococcus otitidis from children with otitis media with effusion</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Characterisation of Alloioococcus otitidis isolates</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Antibiotic susceptibilities of Alloioococcus otitidis</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Inflammatory responses to whole cells of Alloioococcus otitidis</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Effects of filtrates of Alloioococcus otitidis isolates on induction of inflammatory responses in THP-1 assay and assessment of filtrates for protein components</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>
Table of Contents

Title .. i
Statement of originality .. ii
Acknowledgements .. iii
Title of Chapters .. v
Table of contents .. iv
Abstract ... xv
Abbreviations and definitions ... xvi
Publications and abstracts .. xviii
Tables and Figures .. xx

Chapter 1: Introduction and Review

1.1 Epidemiology ... 2
 1.1.1 Populations affected ... 2
 1.1.2 Host-related factors ... 3
 1.1.2.1 Genetic factors ... 3
 1.1.2.2 Environmental risk factors ... 4

1.2 Pathogenesis of otitis media .. 5
 1.2.1 Local responses to infection ... 6

1.3 Clinical symptoms, diagnosis and complications of OM ... 8

1.4 The microbiology of otitis media ... 9
 1.4.1 Biofilms .. 11
 1.4.2 Streptococcus pneumoniae ... 12
 1.4.2.1 S. pneumoniae ... 12
 1.4.2.2 Detection .. 13
 1.4.2.3 Antibiotic susceptibility .. 14
 1.4.3 Haemophilus influenzae ... 14
 1.4.3.1 H. influenzae .. 14
 1.4.3.2 Detection .. 15
 1.4.3.3 Antibiotic susceptibility .. 15
1.4.4 *Moraxella catarrhalis* ... 16
 1.4.4.1 *M. catarrhalis* ... 16
 1.4.4.2 Detection .. 17
 1.4.4.3 Antibiotic susceptibility ... 17
1.4.5 Corynebacteria, *Staphylococcus aureus* and *Streptococcus pyogenes* 17
 1.4.5.1 Corynebacteria spp. ... 17
 1.4.5.2 Detection .. 18
 1.4.5.3 Susceptibility ... 18
1.4.6 *Helicobacter pylori* .. 19
 1.4.6.1 *H. pylori* ... 19
 1.4.6.2 Detection .. 19
 1.4.6.3 Antibiotic susceptibility ... 20
1.4.7 Anaerobic bacteria ... 20
 1.4.7.1 Anaerobic bacteria .. 20
 1.4.7.2 Detection .. 21
 1.4.7.3 Antibiotic susceptibility ... 21
1.4.8 Chlamydia involvement in OM.. 21
 1.4.8.1 *Chlamydia pneumoniae* .. 21
 1.4.8.2 Detection .. 22
 1.4.8.3 Antibiotic susceptibility ... 22
1.4.9 Mycoplasma and otitis media.. 22
1.4.10 *Alloiococcus otitidis* .. 22
 1.4.10.1 *A. otitidis* ... 22
 1.4.10.2 Detection of *A. otitidis* in different populations 24
 1.4.10.3 Antibiotic susceptibility ... 27
1.5 Viruses in otitis media .. 27
1.6 Treatment of acute otitis media ... 30
 1.6.1 Treatment recommendations .. 30
 1.6.2 Classes of antibiotics associated with AOM treatment 31
 1.6.2.1 Macrolides ... 31
 1.6.2.2 Co-trimoxazole .. 31
 1.6.2.3 Cephalosporins ... 31
 1.6.2.4 Quinolones ... 31
 1.6.2.5 Tetracyclines ... 32
1.6.2.6 Penicillins..32
1.6.3 Laboratory tests for guidance of antibiotic therapy32
1.6.4 Antibiotic resistance and problems associated with therapy.......................32
1.7 Management of otitis media with effusion...34
1.8 Prevention of ear infections..35
 1.8.1 Immunisation for pneumococci ...35
 1.8.2 Prophylactic antibiotics...36
 1.8.3 Reduction of risk factors..36
 1.8.3.1 Prone sleeping position ...37
 1.8.3.2 Exposure to tobacco smoke ...37
 1.8.3.3 Mild upper respiratory tract infections ...37
 1.8.3.4 Breast feeding ...38
 1.8.3.5 Day care ..38
 1.8.3.6 Reduction in density of colonisation...38
1.9 Ear infections: a major problem among Indigenous Australians38
1.10 Objectives of the study..40

Chapter 2: Isolation of *Alloiococcus otitidis* from children with otitis media with effusion

2.1 Introduction ...42
2.2 Subjects and methods ..42
 2.2.1 Ethics ...42
 2.2.2 Collection methods at time of surgery ...43
 2.2.3 Laboratory methods ..44
 2.2.3.1 Processing of surgical devices and ear canal swabs44
 2.2.3.2 Media, incubation of media and culture examination44
 2.2.3.3 Organism identification ...45
 2.2.3.4 Molecular identification of *A. otitidis* ..46
 2.2.3.5 Statistical analyses ...46
2.3 Results ...47
 2.3.1 Culture media observations...47
 2.3.2 Detection of bacterial species ..49
 2.3.3 Identification of *A. otitidis* by commercial systems51
2.3.4 Molecular confirmation of *A. otitidis* .. 52

2.4 Discussion .. 51
 2.4.1 Comparison with previous surveys ... 51
 2.4.2 Contaminant, coloniser or pathogen? .. 52
 2.4.3 Comparison with studies in other countries .. 53
 2.4.4 Potential explanations for low isolation rates .. 54
 2.4.4.1 Limitations in identification of the species .. 55
 2.4.5 Confirmation of *A. otitidis* by molecular methods 55
 2.4.6 *A. otitidis*; pathogen or innocent bystander? .. 55
 2.4.7 Conclusions .. 57

Chapter 3: Characterisation of *Alloiococcus otitidis* isolates

3.1 Introduction .. 58

3.2 Methods .. 60
 3.2.1 Colony types .. 60
 3.2.2 Assessment of growth in different gaseous conditions 61
 3.2.3 Viability experiments .. 61
 3.2.4 Detection by automated blood culture system ... 62
 3.2.5 Biochemical identification systems and preparation of isolates 62
 3.2.6 Mass spectroscopy ... 63

3.3 Results .. 63
 3.3.1 Colony variants ... 63
 3.3.2 Growth in different atmospheric conditions .. 66
 3.3.2.1 Carbon dioxide compared to air ... 66
 3.3.2.2 Anaerobic conditions .. 66
 3.3.3 Viability .. 67
 3.3.4 Detection in automated blood culture system ... 67
 3.3.5 Comparison of results obtained with different indentification systems 68
 3.3.5.1 Vitek 2 Compact instrument .. 68
 3.3.5.2 API 20 Strep system ... 68
 3.3.5.3 BBL Crystal system ... 69
 3.3.6 Mass spectroscopy ... 71
3.4 Discussion.. 72
 3.4.1 Colony variants .. 72
 3.4.2 Growth in different atmospheric conditions ... 73
 3.4.3 Viability experiments ... 73
 3.4.4 Detection in automated blood culture instrument .. 74
 3.4.5 Biochemical identification by different kits... 74
 3.4.5.1 Vitek 2... 74
 3.4.5.2 API 20Strep system ... 74
 3.4.5.3 Crystal Gram Positive system .. 75
 3.4.6 Mass spectroscopy .. 76
 3.4.7 Correlation between colony type and other characteristics .. 77
3.5 Conclusions .. 77

Chapter 4: Antibiotic susceptibilities of Alloiococcus otitidis
4.1 Introduction .. 80
4.2 Methods .. 81
4.3 Results ... 83
 4.3.1 Assessment of antibiotic susceptibilities by disc diffusion ... 83
 4.3.2 Assessment of macrolides susceptibility by E-Test ... 85
 4.3.3 Assessment of erythromycin susceptibility by agar dilution 88
 4.3.4 Susceptibility testing using the Vitek 2 instrument ... 88
 4.3.5 Effect of incubation in CO₂ on zone sizes and MIC tests 88
 4.3.6 Comparison of isolates from Indigenous and non-Indigenous children 89
 4.3.7 Comparison of isolates from children in urban or rural/remote areas 89
 4.3.8 Comparison of isolates from children < 2 years of age with those > 2 years of age 89
 4.3.9 Growth of A. otitidis with beta-lactamase producing M. catarrhalis 89
4.4 Discussion .. 90
 4.4.1 Need for standardisation of testing guidelines .. 90
 4.4.2 Comparison of methods for assessment of susceptibility ... 91
 4.4.3 Growth of A. otitidis with M.catarrhalis .. 92
 4.4.4 Antibiotic susceptibilities of A. otitidis of isolates from different ethnic groups, geographic regions and age groups ... 92
Chapter 5: Inflammatory responses to whole cells of

Alloiococcus otitidis

5.1 Introduction .. 94

5.1.1 In vitro assessment of whole cells of *A. otitidis* for induction of inflammation .. 95

5.1.2 Detection of cytokines in clinical material obtained from patients with OM 96

5.1.3 Assessment of inflammatory responses- choice of a model system 97

5.1.3.1 Interferon-γ as a surrogate for viral infection ... 97

5.1.3.2 Pre-treatment with 1α, 25-dihydroxyvitamin D3 (VitD3) ... 98

5.1.4 Objectives .. 98

5.2 Methods .. 99

5.2.1 Materials and reagents ... 99

5.2.2 THP-1 cell line .. 100

5.2.3 Cell maintenance .. 100

5.2.4 Mycoplasma contamination detection ... 101

5.2.5 Cell-viability .. 101

5.2.6 Preparation of stimulants .. 101

5.2.6.1 Formalin-killed bacterial cells .. 101

5.2.7 Assays .. 102

5.2.7.1 The effect of bacterial dose and priming with VitD3 .. 102

5.2.7.2 Screening of individual clinical isolates for induction of inflammatory mediators .. 103

5.2.7.3 Analysis of cytokine response .. 103

5.2.7.4 Cytokine variability .. 103

5.2.8 Statistical analyses .. 104

5.3 Results ... 104

5.3.1 Which cytokines were stimulated by *A. otitidis*? .. 104

5.3.1.1 VitD3 differentiation of THP-1 cells .. 104

5.3.1.2 Effect of pre-treatment of THP-1 cells with IFN-γ .. 104

5.3.2 Does the surrogate for virus infection (IFN-γ) enhance inflammatory responses to whole cells of *A. otitidis*? .. 105
5.3.3 Does A. otitidis elicit cytokines from THP-1 cells primed with IFN-γ similar to those observed for S. pneumoniae ... 106

5.3.4. Are there differences in inflammatory responses induced by individual clinical isolates of A. otitidis in relation to colony type? 107

5.4 Discussion ... 110

5.4.1 Which cytokines, in addition to IL-8 were stimulated by A. otitidis? 110

5.4.2 Does the surrogate for virus infection (IFN-γ) enhance inflammatory responses to the whole cells of A. otitidis? .. 111

5.4.3 Are levels of cytokines elicited by A. otitidis similar to those elicited by a known pathogen S. pneumoniae? .. 112

5.4.4 Are there differences in inflammatory responses induced by individual clinical isolates of A. otitidis? ... 112

5.5 Conclusions ... 112

6.1 Introduction .. 114

6.1.1 Effects of soluble components of A. otitidis on induction of inflammatory responses .. 114

6.1.2 Studies on MEE obtained from patients with OM ... 115

6.1.3 Objectives .. 116

6.2 Methods .. 116

6.2.1 Preparation of extracellular filtrates of A. otitidis ... 116

6.2.2 Assessment of cytokine responses to filtrates ... 116

6.2.3 Enzyme treatment of filtrates ... 117

6.2.4 Reagents for sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) ... 117

6.2.5 Concentration of lysates and removal of lower weight proteins 117

6.2.6 Protein visualisation and interpretation .. 118

6.3 Results .. 118

6.3.1 Cytokine production induced by cell free filtrates of A. otitidis from THP-1 cells with or without pre-treatment with IFN... 118
6.3.2 Cytokine elicited from THP-1 cells by filtrates of the 39 isolates of A. otitidis .. 119
6.3.3 Assessment of cytokine responses from filtrates obtained from isolates in relation to haemolysin production .. 121
6.3.4 Assessment of cytokine responses from isolates of the two colony types ... 122
6.3.5 Cytokine responses elicited by cell free filtrates treated with lysozyme or proteinase K .. 123
6.3.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of filtrates ... 125
6.3.7 Analysis of filtrates of A. otitidis by SDS-PAGE following treatment with lysozyme or proteinase K .. 126
6.3.8 Analysis of protein band in relation to β-haemolysin and colony type 127
6.3.9 Cytokine responses in relation to presence of extracellular proteins 130

6.4 Discussion .. 130
6.4.1 Range of cytokines elicited by clinical isolates of A. otitidis 130
6.4.2 Induction of cytokines by individual filtrates of clinical isolates 131
6.4.3 Effects of enzyme treatment of the filtrates on induction of cytokines 131
6.4.4 Extracellular proteins and biological activities .. 132
6.4.5 Comparison with results of previous studies .. 132

Chapter 7: Conclusions
7.1 Comparison of isolates obtained from Indigenous and non-Indigenous children with OME ... 136
7.2 Conditions for isolation and survival of A. otitidis and its identification by commercially available systems .. 137
7.3 Antibiotic resistance of A. otitidis ... 137
7.4 Assessment of inflammatory responses to whole cells of A. otitidis 138
7.5 Examine filtrates of A. otitidis isolates for soluble components that elicited inflammatory responses reported in earlier studies (Chapter 6) 138
7.6 Pathogen or innocent bystander? .. 139
7.6.1 Adherence and colonisation ... 139
7.6.2 Invasion .. 140
7.6.3 Inflammatory responses and tissue damage .. 140
7.7 Future research .. 141
7.8 Measures to reduce the burden of OM 142

REFERENCES .. 144
Abstract

Ear infections are a major problem worldwide. In 1995, the annual cost of medical and surgical treatment of otitis media (OM) in the United States was estimated between US$3-4 billion. These infections are a particular problem among Indigenous Australians and lead to problems of hearing loss, impairment of learning, development of speech, and social skills.

An epidemiological study of microorganisms present in middle ear effusions of Indigenous and non-Indigenous children with otitis media with effusion (OME) found the major isolate was a rarely isolated species, *Alloiococcus otitidis*. This collection of isolates (n = 39) provided a unique opportunity to: characterise this “new” pathogen; determine if current routine diagnostic techniques were sufficient to identify *A. otitidis*; assess antibiotic susceptibilities; determine if it really is “fastidious” and difficult to isolate; assess potential virulence in a model system employing the human monocytic cell line THP-1.

This is the first report of *A. otitidis* in an Australian population. It is the first description of different phenotypes of this species. It refuted the dogma that the organism is fastidious. It assessed the largest number of isolates to date for antibiotic susceptibilities and found a significant proportion (>33%) resistant to macrolide antibiotics. Slow growth of the organism and presence of β-lactamase producing otopathogens (with which it is often identified in ear effusions by molecular methods) might allow it to survive routine antibiotic treatment for ear infections. In contrast to previous reports using type culture collection isolates, the study provided the only assessment of induction of pro-inflammatory cytokines using recent clinical isolates. The findings have implications for future research on the role of *A. otitidis* in the aetiology of both acute and chronic otitis media; it also has implications for diagnostic microbiology, appropriate treatment of these infections, and development of vaccines against this species.
Abbreviations and definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOM</td>
<td>acute otitis media</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>COM</td>
<td>chronic otitis media</td>
</tr>
<tr>
<td>CSOM</td>
<td>chronic suppurative otitis media</td>
</tr>
<tr>
<td>CD69</td>
<td>proliferation-associated surface marker</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>interferon-gamma</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>MEE</td>
<td>middle ear effusion</td>
</tr>
<tr>
<td>OM</td>
<td>otitis media (inflammation of the middle ear)</td>
</tr>
<tr>
<td>OME</td>
<td>otitis media with effusion</td>
</tr>
<tr>
<td>PBMC</td>
<td>peripheral blood moncytic cells</td>
</tr>
<tr>
<td>PMT</td>
<td>photomultiplier</td>
</tr>
<tr>
<td>RFLP</td>
<td>restriction fragment length polymorphism</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like Receptor</td>
</tr>
<tr>
<td>VitD3</td>
<td>1α, 25-dihydroxyvitaminD₃</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Acute otitis media</td>
<td>Presence of fluid in the middle ear, without perforation, but with clinical signs of acute illness</td>
</tr>
<tr>
<td>Antibiogram</td>
<td>The antibiotic susceptibility pattern of an organism</td>
</tr>
<tr>
<td>Chronic suppurative otitis media</td>
<td>A persistent discharge from the middle ear through a perforated ear drum for more than 6 weeks</td>
</tr>
<tr>
<td>Filtrate</td>
<td>Material that has been passed through a filter</td>
</tr>
<tr>
<td>Lysate</td>
<td>A fluid containing the contents of lysed cells</td>
</tr>
<tr>
<td>Myringotomy</td>
<td>Surgical procedure on the ear drum</td>
</tr>
<tr>
<td>Otitis media with effusion</td>
<td>Presence of fluid in the middle ear without signs or symptoms of acute infection</td>
</tr>
<tr>
<td>Persistent AOM</td>
<td>Lack of improvement in symptoms for 48-72 hrs after starting antibiotics</td>
</tr>
<tr>
<td>Recurrent AOM</td>
<td>Three or more episodes of AOM in 6 months or four to five episodes in 12 months</td>
</tr>
<tr>
<td>Recurrent infections</td>
<td>Three or more episodes</td>
</tr>
<tr>
<td>Sonicate</td>
<td>Bacterial cells disrupted by exposure to high frequency sound waves</td>
</tr>
<tr>
<td>Tympanic membrane</td>
<td>Ear drum</td>
</tr>
<tr>
<td>Tympanostomy tube</td>
<td>Ventilation tube or “grommet”</td>
</tr>
</tbody>
</table>
Publications and abstracts

During the development of this thesis the following publications and conference abstracts were prepared:

Ashhurst-Smith, C., ST Hall, JE Stuart, E Liet, PJ Walker, R Dorrington, R Eisenberg, M Robilliard, CC Blackwell. *Alloiococcus otitidis*: the major isolate from both urban and rural/remote children with chronic otitis media with effusion (glue ear) Third Conference of Aboriginal Health Research, Sydney, Australia 2011

Tables and figures

Table 1.1 Comparison of methods for isolation of *A. otitidis* from patients in different countries.

Table 2.1 Bacterial isolates obtained from ear effusions of Indigenous and non-Indigenous children with chronic otitis media.

Table 3.1 Identification of the *A. otitidis* isolates by commercially available diagnostic kits.

Table 3.2 Summary of discrepant results among the three identification systems and data from diagnostic discs for 39 isolates of *A. otitidis*.

Table 4.1 Susceptibility of *A. otitidis* to various antibiotics by disc diffusion using CLSI guidelines (n=39)

Table 4.2 MIC of *A. otitidis* for erythromycin (agar dilution) and macrolides by E-Test using CLSI guidelines for *Streptococcus pneumoniae*.

Table 4.3 Comparison of CLSI guidelines for *S. pneumoniae* and *Staphylococcus* for interpretation of E-Test results for *A. otitidis* (n=39)

Table 5.1 The effect of bacterial dose and priming with IFN-γ on cytokine responses elicited from THP-1 cells by *S. pneumoniae* (SP) or *A. otitidis*.

Table 5.2 Mean (SD) of cytokine responses induced by *S. pneumoniae* or *A. otitidis* from THP-1 cell primed with IFN-γ (10 ng/ml)

Table 5.3 Cytokine responses elicited by isolates with the small green (SG) colony type (pg/ml).
Table 5.4 Cytokine responses elicited by isolates with the large white (LW) colony types (pg/ml)

Table 6.1 Cytokine production induced by pooled filtrates of A. otitidis with or without heat treatment (100°C for 15 min). (average of two measurements).

Table 6.2 Cytokine responses of cell free filtrates of 39 isolates of A. otitidis. Results adjusted for background control values.

Table 6.3 Means (SD) of cytokine responses elicited by cell free filtrates of A. otitidis in relation to β-haemolysin production.

Table 6.4 Means (SD) of cytokine responses elicited by cell free filtrates of A. otitidis in relation to colony type.

Table 6.5 The effects of lysozyme and proteinase K treatment of lysates of A. otitidis on induction of cytokines from THP-1 cells (means of duplicate wells).

Table 6.6 Protein fractions detected in filtrates of small green colonies in relation to β-haemolysin and cytokine production.

Table 6.7 Protein fractions detected in filtrates of large white colonies in relation to haemolysin and cytokine production.
Figure 1.1 Cotinine levels in sera of children and parents smoking location.

Figure 2.1 Use of antibiotic discs to inhibit non-\textit{A. otitidis} flora from BHI broth subcultures (1).

Figure 2.2 Use of antibiotic discs to inhibit non-\textit{A. otitidis} flora from BHI broth subcultures (2).

Figure 3.1 Comparison of \textit{A. otitidis} colony types; large white colony variant (isolate 27) with small green variant (isolate 33) grown on HBA (bioMérieux) for 7 days at 35°C.

Figure 3.2 Non-haemolytic colonies of \textit{A. otitidis} (isolate 10) grown on HBA for 5 days at 35°C.

Figure 3.3 Colonies of \textit{A. otitidis} with beta-haemolysis (isolate 30) grown on HBA for 10 days at 35°C.

Figure 3.4 \textit{CO}_2 production detected for \textit{S. pneumoniae}, \textit{H. influenzae}, \textit{M. catarrhalis} and \textit{A. otitidis} in standard conditions for blood culture.

Figure 4.1 \textbf{Log}_{10} of MIC (by agar dilution) vs diameter of zone of inhibition (mm).

Figure 6.1 SDS-PAGE: filtrates of \textit{A. otitidis}.

Figure 6.2 SDS-PAGE: filtrates of \textit{A. otitidis} before and after treatment with lysozyme or proteinase K.