Developing Computational Image Segmentation Techniques for the Analysis of the Visual Properties of Dwelling Facades within a Streetscape
STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

I hereby certify that the work embodied in this Thesis is the result of original research, the greater part of which was completed subsequent to admission to candidature for the degree (except in cases where the Committee has granted approval for credit to be granted from previous candidature at another institution).

Chris Tucker
Table of Contents

1 Introduction

1.1 Significance of the Research ... 13

1.2 Research Method: The Development of a Computational Tool 16

1.3 Limitations of the Research ... 17

1.4 Research Method: Data Collection for the Streetscape Analysis 18

1.4.1 Introduction .. 18

1.4.2 Data Type .. 18

1.4.3 Data Recording .. 19

1.4.4 Data Gathering .. 20

1.4.5 Data Processing .. 21

1.5 Structure of the research .. 22

2 The regulatory context and framework for assessing streetscape character

2.1 Introduction .. 24

2.2 Regulations affecting dwelling design within the streetscape 24

2.2.1 Diversity versus contextual fit .. 25

2.3 The Use of a Dwelling's Style within the Planning Process 26

2.4 Studying Streetscape Character at the Scale of the Dwelling 27

2.5 Methods for Visually Assessing Streetscape Character 28

2.6 Streetscape analysis using expert evaluation .. 30

2.7 Place-based Qualities of the Streetscape ... 33

2.7.1 Image-ability of the Streetscape .. 34

2.8 Streetscape as Text .. 35

3 Understanding the Geometric qualities of the streetscape

3.1 Introduction .. 36

3.2 The Texture of the Streetscape ... 36
3.2.1 Composition of elements within the streetscape 38
3.3 The significance of detail within the façade of buildings ... 40
3.4 Analysing visual complexity within a streetscape ... 41
3.5 Considering the scale of elements within a streetscape .. 45
3.6 Analysis of a streetscape using segmentation ... 47
3.7 The Analysis of Visual Diversity: A Fractal Method ... 49
 3.7.1 Introduction 49
 3.7.2 Box-Counting Method 51

4 Space Syntax and Spatial Configuration 55
 4.1 Introduction .. 55
 4.2 Overview of space syntax .. 55
 4.2.1 Isovists, Convex and Axial maps 57
 4.2.2 The Façade Isovist 58
 4.3 Visibility analysis .. 59
 4.3.1 Three-dimensional Visual Analysis 60
 4.4 Topology of urban space .. 64
 4.5 Techniques for mapping the streetscape ... 64
 4.5.1 The use of computer models for planning purposes 65
 4.5.2 The use of digital elevation models 66
 4.5.3 Laser Mapping 67

5 Method: Computational approaches to Streetscape Image Assessment 69
 5.1 Introduction .. 69
 5.2 Software design of Archimage ... 70
 5.2.1 Introduction 70
 5.2.2 Archimage Software Code: Developing the platform 70
 5.2.3 Archimage Software Code: Developing the User Interface 71
 5.2.4 Archimage Software Code: Input Screen 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.3</td>
<td>Example Process</td>
<td>134</td>
</tr>
<tr>
<td>5.8.4</td>
<td>Discussion and Results</td>
<td>134</td>
</tr>
<tr>
<td>5.9</td>
<td>Conceptual Approach 7: Line Strength Array</td>
<td>137</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Overview of the Approach</td>
<td>137</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Limitations of the Approach</td>
<td>138</td>
</tr>
<tr>
<td>5.9.3</td>
<td>Example Process</td>
<td>139</td>
</tr>
<tr>
<td>5.9.4</td>
<td>Discussion and Results</td>
<td>140</td>
</tr>
</tbody>
</table>

6 Conclusions and further work 145

6.1 Findings from the Literature Review 145
6.2 Manifold Learning to detect similarities between processed images 148
6.3 Application of the image processing techniques on a set of similar facades 151
6.4 Further Work 152

7 Bibliography 153

8 Appendix A 161
List of Figures

Figure 1.2-1 Row of houses stitched together from Linwood, Newcastle ... 21
Figure 2.6-1 A streetscape analysed using three scales of decomposition ... 31
Figure 3.6-1 An illustration of parsing by Krampen ... 48
Figure 3.7-1 The fractal assessment of different skylines (Cooper 2003) ... 49
Figure 3.7-2 The box counting method illustrated .. 52
Figure 4.3-1 A fish eye view of an urban open space ... 67
Figure 4.5-1 A DEM of a simulated plan view of an urban area ... 63
Figure 5.1-1 Snapshot of robot vision ... 70
Figure 5.1-2 Competing ‘robodogs’ ... 70
Figure 5.2-1 Archimage input screen showing images loaded ... 73
Figure 5.2-2 The collated output screen from Archimage ... 73
Figure 5.3-1 Original image ... 77
Figure 5.3-2 Red Channel ... 77
Figure 5.3-3 Green Channel .. 77
Figure 5.3-4 Blue Channel .. 77
Figure 5.3-5 Hue band .. 77
Figure 5.3-6 Saturation band ... 77
Figure 5.3-7 Value band .. 77
Figure 5.3-8 Grey levels ... 76
Figure 5.3-9 Interface screen for the colour Classification .. 78
Figure 5.3-10 Output screen for the colour classification processing ... 79
Figure 5.3-11 Original image .. 80
Figure 5.3-12 Colour segmentation .. 79
Figure 5.3-13 Outline of the HSCA .. 81
Figure 5.3-14 Colour Segmentation of HSCA .. 80
Figure 5.3-15 Material changes along one of the main roads running east - west 81
Figure 5.3-16 The HSCA with the suburb layout shown in black outline 81
Figure 5.4-1 Original image ... 83
Figure 5.4-2 Detected edges highlighted ... 82
Figure 5.4-3 Determining the boundaries within the balcony of Figure 7.5-1 83
Figure 5.4-4 ED - lines greater than 3 pixels .. 86
Figure 5.4-5 ED - lines greater than 6 pixels .. 85
Figure 5.4-6 ED - lines greater than 9 pixels .. 86
Figure 5.4-7 ED - lines greater than 12 pixels .. 85
Figure 5.4-8 ED - lines greater than 15 pixels .. 86
Figure 5.4-9 ED - lines greater than 18 pixels .. 85
Figure 5.4-10 ED - lines greater than 21 pixels .. 86
Figure 5.4-11 Original image .. 87
Figure 5.4-12 Horizontal and vertical edges .. 86
Figure 5.4-13 Horizontal edges ... 87
Figure 5.4-14 Vertical edges ... 86
Figure 5.4-15 Level, edge, spot and ripple filters .. 87
Figure 5.4-16 Image segmentation ... 87
Figure 5.5-1 Output screen of the fractal dimension calculator for a 640 x 480 pixel image ... 91
Figure 5.5-2 Output screen of the fractal dimension calculator for a 640 x 480 pixel image ... 92
Figure 5.5-3 Output screen of the fractal dimension calculator for a 2000 x 2667 pixel image ... 92
Figure 5.5-4 Dwelling top D=1.65 .. 94
Figure 5.5-5 ED dwelling top D=1.65 .. 93
Figure 5.5-6 Dwelling bottom D=1.92 ... 95
Figure 5.5-7 ED dwelling bottom D=1.92 .. 94
Figure 5.5-8 Modern terrace 1, fractal calculation D=1.79 95
Figure 5.5-9 Modern terrace 2, fractal calculation D=1.79 95
Figure 5.5-10 Modern terrace 3, fractal calculation D=1.88 96
Figure 5.5-11 Modern terrace 4, fractal calculation D=1.88 96
Figure 5.5-12 Modern terrace 5, fractal calculation D=1.80 97
Figure 5.5-13 Modern terrace 6, fractal calculation D=1.81 97
Figure 5.5-14 Federation dwelling 1, fractal calculation D=1.90 98
Figure 5.5-15 Federation dwelling 2, D=1.85 ... 99
Figure 5.6-1 A three-dimensional view of the HTAA 100
Figure 5.6-2 The Hough Transform ... 101
Figure 5.6-3 Bungalow dwelling ... 103
Figure 5.6-4 HTAA of the bungalow dwelling .. 102
Figure 5.6-5 Modern terrace .. 103
Figure 5.6-6 Inverse HT of the modern terrace ... 103
Figure 5.6-7 Inverse HT of the bottom half of a church 104
Figure 5.6-8 White square HTAA .. 106
Figure 5.6-9 White square inverse HT ... 106
Figure 5.6-10 Two square HTAA ... 107
Figure 5.6-11 Two square inverse HT .. 106
Figure 5.6-12 Federation dwelling 1 ... 108
Figure 5.6-13 Federation dwelling 2 ... 108
Figure 5.6-14 Inverse HT and HTAA of Federation dwelling 1 108
Figure 5.6-15 Inverse HT and HTAA of Federation dwelling 2 109
Figure 5.6-16 Inverse HT of modern detached dwelling 109
Figure 5.6-17 Inverse HT and original line drawing 110
Figure 5.6-18 Inverse HT of a line drawing ... 110
Figure 5.6-19 HTAA of modern terrace 1 .. 111
Figure 5.7-24 Lines within streetscape C ... 131
Figure 5.7-25 Lines within streetscape A, B and C ... 130
Figure 5.7-26 Lines within streetscape A and B ... 131
Figure 5.7-27 Lines within streetscape A and C ... 130
Figure 5.7-28 Lines within streetscape B and C ... 132
Figure 5.7-29 Lines within streetscape A, B and C ... 131
Figure 5.8-1 Modern terrace 1 .. 133
Figure 5.8-2 PA of modern terrace 1 ... 132
Figure 5.8-3 First iteration of the PA .. 134
Figure 5.8-4 Second iteration of the PA .. 133
Figure 5.8-5 Inverse HT of modern terrace 2 .. 135
Figure 5.8-6 PA of modern terrace 2 ... 134
Figure 5.8-7 Inverse HT of modern terrace 3 .. 137
Figure 5.8-8 PA of modern terrace 3 ... 135
Figure 5.8-9 Inverse HT of modern terrace 4 .. 136
Figure 5.8-10 PA of modern terrace 4 ... 135
Figure 5.8-11 Inverse HT of Federation dwelling 1 ... 137
Figure 5.8-12 PA of Federation dwelling 1 .. 136
Figure 5.9-1 Modern terrace 1 .. 138
Figure 5.9-2 LSA of modern terrace 1 ... 137
Figure 5.9-3 Post war dwelling 1 ... 141
Figure 5.9-4 LSA Post war dwelling 1 .. 140
Figure 5.9-5 Post war dwelling 2 ... 142
Figure 5.9-6 LSA Post war dwelling 2 .. 141
Figure 5.9-7 Modern terrace 2 .. 142
Figure 5.9-8 LSA modern terrace 2 .. 141
Figure 5.9-9 Modern terrace 3 .. 143
Figure 5.9-10 LSA modern terrace 3 .. 142
Figure 5.9-11 Modern terrace 4 .. 143
Figure 5.9-12 LSA modern terrace 4 .. 142
Figure 5.9-13 Federation house 1 ... 144
Figure 5.9-14 LSA Federation house 1 ... 143
Figure 5.9-15 Federation house 2 ... 144
Figure 5.9-16 LSA Federation house 2 ... 143
Figure 5.9-17 Federation house 3 ... 145
Figure 5.9-18 LSA Federation house 3 ... 144
Figure 6.1-1 Modern terrace 1 .. 149
Figure 6.1-2 Image sliced into pixel widths ... 148
Figure 6.1-3 Reconstructed image 1 ... 149
Glossary of Terms

D Fractal Dimension calculated using the box-counting method
DCP Development Control Plan
HT Hough Transform
HTAA Hough Transform Accumulator Array
IHT Inverse Hough Transform
LC Line Count graph
LGA Local Government Area
LSA Line Strength Array
ML Manifold Learning
PA Polar Array
LEP Local Environment Plan
SEPP State Environmental Planning Policy
SVM Support Vector Machine

Acknowledgments

This dissertation would not have been possible without the support of a number of academic colleagues including Dr. Stephan Chalup, Josh Marshall, Michael Chapman and in particular my supervisor and mentor Prof. Michael Ostwald, who has provided my research with direction and rigor for a number of years. I would also like to thank Abbie, Oscar and Max for the support and time they have provided.
Abstract

The relationship between new or proposed buildings and existing urban or suburban settings has, in the past two decades, become an increasingly contentious issue in architectural, planning and public policy forums. Unlike new buildings that are sited within the natural landscape, or those that are visually removed from the public eye, those structures that are added to dense urban and suburban spaces necessarily have a visual impact on neighbouring buildings and the resultant streetscape. The present dissertation is focussed on techniques for measuring the character of existing buildings in urban and suburban spaces as a means of supporting the quantitative assessment of building proposals. The dissertation initially reviews past developments in the field, before documenting the development and pilot testing of a series of computational approaches to the analysis of the visual qualities of buildings and neighbourhoods. The dissertation does not develop these approaches to the extent needed to apply them in practice, or test them in sufficient detail to provide clear evidence for their potential. Instead, the research provides information about the approaches, expected outcomes, preliminary data and discussion of the strengths and weaknesses of each method.