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A GENERALISED EMERSON RECURRENCE RELATION 
 
 

J. C. W. RAYNER1*, O. THAS2 AND B. De BOECK2 

University of Newcastle and Ghent University 
 
 

Summary 
 

The Emerson (Biometrics, vol. 24, pp. 695-701, 1968) recurrence relation has many 
important applications in statistics. However the original derivation applied only to 
discrete distributions. In the following, a simple derivation is given that generalises 
the Emerson recurrence relation to any distribution for which the necessary 
expectations exist. A modern application is outlined. 
 
Key words: Hermite polynomials; orthonormal polynomials; spherical Legendre 
polynomials. 

 
1. Introduction 

 
The Emerson (1968) recurrence relation provides a useful result that enables a set of orthonormal 
polynomials to be built up from two initial polynomials. However the Emerson derivation was for 
discrete distributions only. Modern applications require an efficient method of calculation of 
orthonormal polynomials for arbitrary distributions. Such a method is provided here, and is 
demonstrated by deriving the Hermite and spherical Legendre polynomials. A modern application, 
to smooth tests of goodness of fit, is outlined in the final section. In modern data driven application 
of these tests, test statistics of moderate order (up to order 10, say) are required; these in turn 
require orthonormal polynomials of similar order. See http://biomath.ugent.be/~othas/recurrence for 
R (2008) code implementing the results here. 

Suppose {hr(x)} is the set of orthonormal polynomials with respect to a real random 
variable X in the sense that E{hr(X) hs(X)} = 0 for r ≠ s and E{ ( )Xhr

2 } = 1 with r, s = 0, 1, 2, … . In 
the goodness of fit application discussed in Section 4, this distribution is specified by the null 
hypothesis. This distribution may depend on nuisance parameters but these are suppressed in the 
subsequent notation. Here E denotes expectation with regard to this distribution. In the following, 
we will always assume that all the required expectations exist.  

In general we write E(X) = µ and µr = E{(X – µ)r} for r = 2, 3, … . We shall assume 
{ )(* xhr } is a set of orthogonal polynomials with )(*

0 xh  = 1 for all x. It will be convenient to write cr 
= E[ ( ) 2* }{ Xhr ] for r = 0, 1, 2, … . Thus if hr(x) = )(* xhr /√cr for all x and r = 0, 1, 2, … , then {hr(x)} 
is the corresponding set of orthonormal polynomials. The initial polynomials are h0(x) = )(*

0 xh  = 1 
for all x, )(*

1 xh  = (x – µ) and h1(x) = (x – µ)/√µ2. Clearly c0 = 1 and c1 = µ2. 
The Emerson (1968) recurrence relation uses the fact that the hr(x) are polynomials. The 

resulting process is more efficient than the more general Gram-Schmidt method in the sense that 
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fewer numerical operations are required to generate the orthonormal polynomials. In expectation 
form, the Emerson (1968) recurrence relation is  
 

)(* xhr  = [x – E{

 

Xhr−1
2 X( )}] hr-1(x) – E{Xhr-2(X)hr-1(X)} hr-2(x).                                  (1) 

 
This equation does not assume that the mean µ is zero. With, for example, r = 2, (1) generates 

)(*
2 xh  = {(x – µ)2 – (µ3/µ2)(x – µ) – µ2}/√µ2. Direct calculation gives c2 = 2

2
22

2
34 /)/( µµµµµ −− , 

but direct calculation becomes increasingly more complex. Instead cr can be conveniently 
calculated by recurrence. See Theorem 2 below. 

In the setting here the two initial polynomials are normalised and generate through (1) a 
polynomial that is not normalised. This is then normalised and fed into (1) to produce the next 
polynomial and so on. The Emerson (1968) derivation is in terms of an arbitrary discrete 
distribution, but the method given here can be applied to any distribution provided the necessary 
expectations exist. Hence the new equation can fairly be called a generalised Emerson recurrence 
relation. 
 
 

2. A generalised Emerson recurrence relation 
 

We now derive a recurrence relation for an underpinning distribution for which all 
expectations involved exist. 

We subsequently assume that, for all r > 2, 
 

)(* xhr  = ar,r xr + ar-1,r xr-1 + ar-2,r xr-2 + … + a1,r x + a0,r. 
 
The ai,r are defined for i = 0, 1, … , r, for r = 2, 3, … . It is convenient to set the boundary condition 
a–1, j = 0 for j = 0, 1, … , r. 

If all orthonormal polynomials up to the (r – 1)th are known, then Theorem 1 enables 
calculation of the rth orthogonal polynomial.  
 
Theorem 1. If h0(x) = 1 for all x and h1(x) = (x – µ)/√µ2, then for r = 2, 3, … , )(* xhr , defined by 
(1), is orthogonal to h0(x), h1(x), … , hr-1(x). 
 
Proof. Define, for r = 2, 3, … 

 
)(* xhr  = ( ) ( ) ( ) ( )xhb...xhbxhbxxh r,rr,rrr,rr 0022111         ++++ −−−−− ,                                      (2) 

 
in which bi,j are defined for integers i and j with i = 0, 1, … , j – 1, for j = 2, 3, … . The xhr-1(x) term 
on the right hand side of (2) ensures hr(x) is of degree r, while the bi,r, i = 0, 1, … , r – 1 are to be 
chosen so that )(* xhr  is orthogonal to h0(x), h1(x), … , hr-1(x). Orthogonality gives 

 
0 = E{hi(X) )(* Xhr } = E{X hi(X) hr-1(X)} + bi,r for i = 0, 1, … , r – 1, 

 
using the normality of the hi(x), i = 0, 1, … , r – 1. For i = 0, 1, … , r – 3, xhi(x) is a polynomial of 
degree at most r – 2, and hence expressible as a linear combination of h0(x), h1(x) , … , hr-2(x). This 
will necessarily be orthogonal to hr-1(x). It follows that, for r > 2, we have bi,r = 0 for i = 0, 1, … , r 
– 3, and that br-2,r and br-1,r are given by 
 

br-2,r = – E{Xhr-1(X)hr-2(X)} and br-1,r = – E{ ( )XXhr
2

1− }. 
 
This gives (1). The orthogonality is inherent in the construction.                                                       � 
 
Corollary. For r = 2, 3, … and i = 0, 1, … , r, 
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ai,r = 
1

1,1

−

−−

r

ri

c
a

 + 
1

1,,1

−

−−

r

rirr

c
ab

 + 
2

2,,2

−

−−

r

rirr

c
ab

. 

 
with boundary conditions a0,0 = 1, c0 = 1, a1,1 = 1/√µ2, a0,1 = – µ/√µ2, c1 = 1. 
 
Proof. This follows by equating coefficients in  

 
)(* xhr  = ∑ =

r

i
i

ri xa
0 ,  = ( ) ( ) ( )xhbxhbxxh rr,rrr,rr 22111    −−−−− ++ .                                 � 

 
Theorem 2. Assume that the polynomials )(*

0 xh , )(*
1 xh , … , )(*

1 xhr−  and the constants c0, c1, … ,  
cr–1 are known, and that the necessary moments required in the following exist. Write rµ′  = E(Xr) 
for r = 1, 2, … . For r = 2, 3, … , the quantities required in (1), and cr, can be obtained from 

 

E{ ( )XXhr
2

1− } = – br-1,r = 
1

1

0

1

0
11,1,

−

−

=

−

=
++−−∑∑ ′

r

r

j

r

k
kjrkrj

c

μaa
, 

E{Xhr-1(X)hr-2(X)} = – br-2,r = 
21

1

0

2

0
12,1,

−−

−

=

−

=
++−−∑∑ ′

rr

r

j

r

k
kjrkrj

cc

aa µ
 and 

cr = 
1

1

0

1

0
21,1,

−

−

=

−

=
++−−∑∑ ′

r

r

j

r

k
kjrkrj

c

aa µ
 – 2

,1 rrb −  – 2
,2 rrb − . 

 
Proof. Since hr-1(x) = 1

1

0 1, / −
−

= −∑ r
r

i
i

ri cxa , we have 
 

( )xhr
2

1−  = 
1

1

0

1

0
1,1,

−

−

=

−

=

+
−−∑∑

r

r

j

r

k

kj
rkrj

c

xaa
. 

 
Using this equation E{ ( )XXhr

2
1− } may be found, and E{Xhr-1(X)hr-2(X)} may be derived similarly. 

Thus, knowing the ai,js and cjs up to degree r – 1, we can find E{Xhr-2(X)hr-1(X)} and E{ ( )XXhr
2

1− }, 
and then br-2,r and br-1,r, and thereby )(* xhr  = ( ) ( ) ( )xhbxhbxxh rr,rrr,rr 22111    −−−−− ++ . With )(* xhr  now 
specified, the normalising constant can be found by squaring and taking expectations in (2) giving, 
as required, 
 

cr = E[{ )(* Xhr }2] = E{ ( )XhX r
2

1
2

− } – 2
,1 rrb −  – 2

,2 rrb − . 
 
In this expression E{ ( )XhX r

2
1

2
− } is calculated in the same manner as the other expectations.          � 

 
The algorithm that is implemented at the web site given in Section 1 is essentially given by 

the corollary to Theorem 1 and Theorem 2. Since h0(x) and h1(x) are given by the boundary 
conditions, Theorem 2 gives the bi,js that are required to calculate )(*

2 xh , and also c2, that is 
required to normalise it. Now h1(x) and h2(x) are known, and can be used in the same way to 
calculate h3(x), and so on. 

In applying the recurrence procedure with expectations approximated numerically, the error 
first introduced by approximating is propagated and augmented by subsequent approximations. In 
the examples we have assessed, such as the Hermite polynomials considered below, the first ten 
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polynomials are correct to ten decimal places. However, by the 15th polynomial, accuracy has 
declined markedly. 
 
 

3. Examples 
 

We now show that the generalised Emerson equation (1) generates the Hermite and 
Spherical Legendre polynomials. Of course, both of these are based on continuous, rather than 
discrete, weight functions. 

 
The Hermite Polynomials 

For the standard normal distribution, the polynomials with leading coefficient unity are 
denoted by Her(x) in Abramowitz & Stegun (1970, Chapter 22). By Abramowitz & Stegun (1970, 
22.2.15), E{ ( )XHer

2 } = r!, and from Abramowitz & Stegun (1970, 22.7.14), 
 

Her(x) = x Her-1(x) – (r – 1) Her-2(x). 
 
Multiplying throughout by Her(x) and taking expectations gives E{X Her(X) Her-1(X)} = r! for all r. 
The first four orthogonal polynomials generated by this system are 
 

He0(x) = 1 for all x, He1(x) = x, He2(x) = (x2 – 1) and He3(x) = (x3 – 3x). 
 

We now show these Her(x) satisfy (1). Put hr(x) = Her(x)/√r! and note that ( )xHer
2

1−  is an 
even function, so E{ ( )XXHer

2
1− } is the expectation of an odd function using an even probability 

density function, and so is zero. Since from above E{X Her-1(X) Her-2(X)} = (r – 1)!, it follows that  
 

E{X hr-1(X) hr-2(X)} = √(r – 1). 
 
Now the right hand side of (1) reduces to  
 

( ) ( )
( )!1

  0 1

−
− −

r
xHex r  – ( )

( )!2
  1 2

−
− −

r
xHer r  = ( ) ( ) ( ){ }

( )!1
 1   21

−
−− −−

r
xHerxHex rr  = ( )

( )!1
  

−r
xHer , 

 
using Her(x) = x Her-1(x) – (r – 1) Her-2(x). Thus the Hermite polynomials are the solution of (1) 
corresponding to the standard normal distribution. 
 
The Spherical Legendre Polynomials 

For the uniform distribution over (–1, 1), Abramowitz & Stegun (1970, Chapter 22) give 
detail for the spherical Legendre polynomials {Pn(z)}; particularly note Abramowitz & Stegun 
(1970, 22.2.10, 22.3.8 and 22.7.10). These polynomials are orthogonal but not normalised. A 
recurrence relation that generates them is 
 

Pr(z) r = z Pr-1(z) (2r – 1) – Pr-2(z) (r – 1). 
 
The first four spherical Legendre polynomials are given by 
 

P0(z) = 1 for all z, P1(z) = z, 2 P2(z) = (3z2 – 1) and 2 P3(z) = (5z3 – 3z). 
 

We now show that the Pr(z) are the solution to (1). If the defining recurrence relation above 
is multiplied throughout by Pr-2(z) and expectations taken, we find  
 

E{Z Pr-1(Z) Pr-2(Z)} = ( )( )3212
1

−−
−

rr
r . 
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Also, by the same argument as in the Hermite example, E{

 

ZPr−1
2 Z( )} = 0. Moreover adjusting 

Abramowitz & Stegun (1970, 22.2.10) to account for their different weight function gives 
E{

 

Pr
2 Z( )} = 1/(2r + 1). Substituting shows that Pr(z) is a solution of (1) if and only if  

 
r ar, r = (2r – 1) ar-1, r-1. 

 
For the spherical Legendre polynomials this follows from Abramowitz & Stegun (1970, 22.3.8), 
which gives 
 

ar, r = r

r
r −









2 

2
. 

 
A quick way to generate the normalised Legendre polynomials {πr(x)} with weight function 

the uniform (0, 1) distribution is to generate the spherical Legendre polynomials, normalise by 
using E{ ( )ZPr

2 } = 1/(2r + 1) and then replace z by 2x – 1. The first four normalised Legendre 
polynomials are:  
 

π0(x) = 1, π1(x) = (2x – 1)√3, π2(x) = (6x2 – 6x + 1)√5 and π3(x) = (20x3 – 30x2 + 12x – 1)√7. 
 
 

4. Smooth tests of goodness of fit 
 

Suppose we wish to test if a random sample X1, … , Xn comes from a distribution with 
probability (density) function f(x; β), where β is a q × 1 vector of nuisance parameters, such as the 
rate when testing for an exponential distribution. First define a smooth alternative of order k by 
 

gk(x; θ, β) = ( ) ( ) ( )ββθβθ ;;exp,
1

xfxhC
kq

qi
ii













∑
+

+=
. 

 
Here {hi(x; β)} is a set of orthonormal polynomials on f(x; β), θ1, … , θk are real-valued parameters, 
θ = (θ1, … , θk)T, and C(θ; β) is a normalising constant (assumed to exist) that ensures that gk(x; β) 
sums (integrates) to one. One approach is to use the score test of H: θ = 0 against K: θ ≠ 0. If the 
densities f(x; β) as β ranges over a well-defined parameter space form an exponential family, using 
Rayner & Best (1989, Theorem 6.1.1) the test statistic is  
 

22
1 ... kqq VV ++ ++  in which Vr = 

( )
n

Xh
n

j
jr∑

=1

ˆ;β
. 

 
Here β̂  is the maximum likelihood estimator of β, with estimating equations V1 = V2 = … = Vq = 0. 

For densities not in an exponential family the score test statistic is more complicated, but 
nevertheless involves the orthonormal polynomials {hi(x; β)}. For discrete distributions such as the 
zero inflated Poisson (see Thas & Rayner, 2005), the orthonormal polynomials can be generated 
using the Emerson (1968) recurrence relation. For standard distributions, they may be found in 
sources such as Abramowitz & Stegun (1970). However for distributions such as the extreme-value 
and the Laplace, these avenues are not available. See, for example, Best, Rayner & Thas (2007).  

To be explicit, the usual extreme-value distribution has two parameters: a location 
parameter α and a dispersion parameter β. If we let X have the extreme-value distribution, then the 
standardized extreme-value variable T = (X – α)/β has probability density function 

 
fT(t) = exp{– t – exp(–t)}, – ∞ < t < ∞. 
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For this standardised distribution, the orthonormal polynomials to order four are 
 

h0(t) = 1, h1(t) = (√6)(t – γ)/π, h2(t) √8.392 = (6/ π2){(t – γ)2 – 1.462(t – γ) – π2/6}, 
h3(t) √20 = (6√6/π3){(t – γ)3 – 4.662(t – γ)2 – 2.069(t – γ) + 5.265}, and 

h4(t) √219.72 = (36/π4){(t – γ)4 – 9.693(t – γ)3 + 10.792(t – γ)2 + 31.160(t – γ) – 9.060}, 
 
where γ is Euler’s constant, approximately 0.57722. 

The data driven smooth tests of goodness of fit advocated by, for example, Ledwina (1994), 
Kallenberg & Ledwina (1997) and Claeskens & Hjort (2004), all require orthonormal polynomials 
up to order at least 10. The results of this paper make their methodology far more practical than 
previously. 
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