The Renin-Angiotensin System in Endometrial Cancer

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Human Physiology
Riazuddin Mohammed

Hunter Medical Research Institute (HMRI)

School of Biomedical sciences and Pharmacy

Faculty of Health and Medicine

The University of Newcastle

August 2018
DECLARATION STATEMENT

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the copyright Act 1968 and any approved embargo.

Signed………………………………

7th August 2018
Date……………………………………..
ACKNOWLEDGEMENTS

“Good teachers know how to bring out the best in students”

– Charles Kuralt

This quote perfectly suits the people who were instrumental in bringing out the best in me, none other than my supervisors Dr. Kirsty Pringle and Emeritus Prof. Eugenie Lumbers. Every day was a learning process for me under their supervision. Their excellent scientific knowledge coupled with a friendly demeanor made my journey comforting and enjoyable. Their excellent guidance has honed my scientific research skills further. I have learnt some outstanding research nuances and the way to communicate research in writing from them. Apart from research work, the support and understanding they showed towards my personal life was very much appreciated. It was a real pleasure working with them as a PhD student. I would like to express my whole-hearted gratitude to my supervisors for making this thesis a reality. Thanks so much for the support and encouragement Eugenie and Kirsty.

I would like to convey thanks to Dr. Nikki Verrills, for her valuable suggestions.

I would like to express my sincere thanks to Celine and Sarah, for their constant encouragement and also their outstanding experimental support for Western Blot, sPRR ELISA and PCR experiments. I would like to extend my sincere thanks to Dr. Eric Wang, who taught me cell culture and PCR techniques.

I would like to express my sincere thanks to my group mates – Yu Qi, Sam, Saije and Anya, for their understanding and support and also the Hirst and MBRC groups. I would like to thank my friends in HMRI and Newcastle – for all the good and memorable times
we spent together. I express my gratitude to UoN for granting me a Thora May Crighton scholarship and HCRA for travel grants.

Now, the word thanks is always short for their support and understanding throughout my PhD, which is to my parents and my family.

Then last but not the least to my wife Asma, who gave me the greatest gift anyone could give another person, she believed in me. She is an unwavering pillar of support and her unconditional love and faith never ceased to amaze me and gave me the strength to be myself. You constantly challenged me to “raise the bar” and made me believe in myself so that I can.
Table of Contents

DECLARATION STATEMENT ... 3

ACKNOWLEDGEMENTS .. 4

ABSTRACT .. 12

CONFERENCE ABSTRACTS .. 14

ABBREVIATIONS .. 16

LIST OF FIGURES ... 20

LIST OF TABLES .. 23

CHAPTER 1 - INTRODUCTION .. 23

1.1 ENDOMETRIAL CANCER .. 23

1.2 EMT (EPITHELIAL MESENCHYMAL TRANSITION)/TUMOUR INVASION 24

1.3 ENDOMETRIAL CANCER GRADING .. 26

1.4 RENIN-ANGIOTENSIN SYSTEM ... 28

1.5 TISSUE RENIN-ANGIOTENSIN SYSTEMS ... 31

1.6 SOLUBLE (PRO)RENIN RECEPTOR (s(P)RR) ... 33

1.7 THE RENIN-ANGIOTENSIN SYSTEM IN ANGIogenesis .. 35

1.8 THE RENIN ANGIOTENSIN SYSTEM IN ENDOMETRIAL CANCER 36

1.9 RAS BLOCKING DRUGS ... 39

1.9.1 Angiotensin converting enzyme inhibitors (ACEIs) .. 39

1.9.2 Angiotensin receptor blockers (ARBs) .. 40

1.10 PPARs and PPAR-γ agonists .. 43

1.11 Renin inhibitors .. 43

1.12 Drugs that target the (P)RR ... 44

1.12.1 (P)RR antagonists ... 44

1.12.2 (P)RR knockdown by ATP6AP2 siRNA ... 45
CHAPTER 2 - MATERIALS AND METHODS ..59

2.1 CHEMICALS..59
2.2 CELL CULTURE ...59
 2.2.1 Cell lines ..59
 2.2.2 Passaging cells ...60
 2.2.3 Freezing and thawing ..60
2.3 SEMI-QUANTITATIVE REAL-TIME REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION (qPCR) ...61
 2.3.1 RNA Extraction ...61
 2.3.2 RNA Quantification and assessment of purity ...62
 2.3.3 DNase treatment ...62
 2.3.4 Reverse transcription ...62
 2.3.5 Real Time Polymerase Chain Reaction ...63
2.4 siRNA TRANSFECTION ..64
2.5 CELL VIABILITY ASSAY ...66
2.6 CELL PROLIFERATION BY xCELLIGENCE MACHINE ..67
2.7 PREPARATION OF CELLS FOR WESTERN BLOTTING68
 2.7.1 Protein extraction by RIPA buffer ...68
 2.7.2 BCA assay ...69
 2.7.3 Western blot ..69
 2.7.4 Immunodetection ..70
2.8 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) ..71
2.9 REFERENCES ...72

CHAPTER 3 - ROLE OF (PRO)RENIN RECEPTOR ((P)RR) IN ENDOMETRIAL CANCER CELL GROWTH IN THREE
ENDOMETRIAL CANCER CELL LINES ..73

3.1 INTRODUCTION ...73
3.2 MATERIALS AND METHODS ..75
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Cell Culture</td>
<td>75</td>
</tr>
<tr>
<td>3.2.2</td>
<td>siRNA Transfection</td>
<td>75</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Real-time reverse transcriptase polymerase chain reaction (qPCR)</td>
<td>76</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Western blot</td>
<td>77</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Cell viability</td>
<td>78</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Cell proliferation</td>
<td>79</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Statistics</td>
<td>79</td>
</tr>
<tr>
<td>3.3</td>
<td>RESULTS</td>
<td>80</td>
</tr>
<tr>
<td>3.3.1</td>
<td>ATP6AP2 mRNA expression in endometrial cancer cell lines</td>
<td>80</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Effect of ATP6AP2 siRNA on ATP6AP2 mRNA abundance in endometrial cancer cell lines</td>
<td>80</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Effect of ATP6AP2 siRNA on ATP6AP2 protein expression in endometrial cancer cell lines</td>
<td>82</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Effects of ATP6AP2 siRNA on Endometrial Cancer Cell Function</td>
<td>84</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Effect of ATP6AP2 siRNA on endometrial cancer cell viability (resazurin assay)</td>
<td>85</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Effect of ATP6AP2 siRNA on VEGF mRNA expression in endometrial cancer cell lines</td>
<td>87</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Effect of a peptide inhibitor of ATP6AP2 on endometrial cancer cell viability</td>
<td>88</td>
</tr>
<tr>
<td>3.4</td>
<td>DISCUSSION</td>
<td>89</td>
</tr>
<tr>
<td>3.5</td>
<td>REFERENCES</td>
<td>93</td>
</tr>
</tbody>
</table>

CHAPTER 4 - SOLUBLE (P)RR IN HUMAN PLASMA, UTERINE FLUID AND SUPERNATANT FROM THREE ENDOMETRIAL CANCER CELL LINES

4.1 INTRODUCTION 96
4.2 MATERIALS AND METHODS 97
4.2.1 Patient samples 97
4.2.2 Supernatant Media 98
4.2.3 Enzyme linked immunosorbent assay (ELISA) 98
4.2.4 Statistics 99
4.3 RESULTS 99
4.3.1 Soluble (pro)renin receptor (s(P)RR) concentration in supernatant samples of three endometrial cancer cell lines | 99
4.3.2 Soluble (pro)renin receptor (s(P)RR) concentrations in supernatant samples from three endometrial cancer cell lines

4.3.3 Soluble (pro)renin receptor (s(P)RR) levels in human plasma and uterine fluid

4.4 Discussion

4.5 References

CHAPTER 5 - EFFECT OF RENIN-ANGIOTENSIN SYSTEM (RAS) BLOCKERS IN ENDOMETRIAL CANCER CELL LINES

5.1 Introduction

5.2 Methods

5.2.1 Drugs

5.2.2 Statistics

5.3 Results

5.3.1 RAS mRNA expression in endometrial cancer cell lines

5.3.2 Effect of renin inhibitors (aliskiren and VTP-27999) on cell viability in endometrial cancer cell lines

5.3.3 Effect of an ACE inhibitor on cell viability in endometrial cancer cell lines

5.3.4 Effects of angiotensin receptor blockers (ARBs) on cell viability and cell proliferation in endometrial cancer cell lines

5.3.5 Effect of a PPAR-γ agonist (troglitazone) on cell viability and cell proliferation in three endometrial cancer cell lines

5.4 Discussion

5.5 References

CHAPTER 6 - COMBINED EFFECT OF RENIN-ANGIOTENSIN SYSTEM (RAS) BLOCKERS IN ENDOMETRIAL CANCER CELL LINES

6.1 Introduction

6.2 Methods

6.2.1 Drugs

6.2.2 Statistics
6.3 RESULTS.. 131

6.3.1 The combined effects of an ARB (telmisartan) and a PPAR-γ agonist (troglitazone) 131

6.3.2 The effects of combined treatment with aliskiren (a renin inhibitor) and perindoprilat (an ACEI) on cell viability ... 134

6.3.3 The effects of treatment with a renin inhibitor (aliskiren) and an ARB (losartan) in combination ... 137

6.3.4 The combined effects of (P)RR siRNA and RAS blockers on cell growth and cell viability 139

6.3.4.1 The combined effects of an ACEi (perindoprilat) and ATP6AP2 siRNA on cell viability 139

6.3.4.2 The combined effects of an ARB (loasartan) and an ATP6AP2 siRNA on cell viability 141

6.3.4.3 The combined effect of treatment with an ATP6AP2 siRNA and telmisartan (ARB) on cell proliferation ... 143

6.3.4.4 Effects of combined treatment with ATP6AP2 siRNA and telmisartan (ARB) on cell proliferation in three endometrial cancer cell lines .. 145

6.4 DISCUSSION.. 147

6.5 REFERENCES ... 150

CHAPTER 7 - EFFECT OF OVARIAN STEROIDS (ESTROGEN & PROGESTERONE) ON THE RENIN-ANGIOTENSIN SYSTEM (RAS) EXPRESSION IN MCF-7 AND RL-952 CELLS .. 151

7.1 INTRODUCTION ... 151

7.2 METHODS .. 152

7.2.1 Cell Culture and Treatments .. 152

7.2.2 Real-time reverse transcriptase polymerase chain reaction (qPCR) 153

7.2.3 Statistics .. 154

7.3 RESULTS .. 155

7.3.1 Expression of RAS genes in RL-952 and ECC-1 cells ... 155

7.3.2 Response to Estrogen (E₂) in MCF-7 and RL-952 cells ... 157

7.3.3 Effects of medroxyprogesterone acetate on the expression of the RAS and VEGF in MCF-7 and RL-952 cells ... 158

7.3.4 Estrogen (ESR1) and progesterone (PR) receptors in RL-952 cells 158

7.4 DISCUSSION... 159

7.5 REFERENCES ... 161
Abstract

Endometrial cancer is one of the fourth most common cancer in the developed world and its incidence is increasing rapidly. Several studies have shown that there is an upregulation of the pro-angiogenic arm of the renin angiotensin system in endometrial cancer. Endometrial cancers express both prorenin and (pro)renin receptor ((P)RR) mRNA and have significantly greater levels of these proteins than normal adjacent endometrial tissue. Prorenin acting via the (P)RR can activate both RAS dependent and independent signaling pathways.

To determine the functional role of (P)RR in endometrial cancer growth, we used siRNA transfection to knock down (P)RR expression in three endometrial cancer cell lines (Ishikawa, HEC-1A and AN3CA). All three of the endometrial cancer cell lines examined (Ishikawa, HEC-1A and AN3CA) expressed (P)RR and prorenin (REN) mRNA, however levels of (P)RR and AGTR1 were much higher in Ishikawa cells. Transfection with a (P)RR siRNA resulted in knockdown of (P)RR at both gene and protein level in three cell lines. Furthermore, there was a significant reduction in endometrial cancer cell growth (proliferation and cell viability) in Ishikawa and AN3CA cells.

Several studies show that (P)RR is released in a soluble form (s(P)RR) into blood and urine. We therefore hypothesized that s(P)RR could be released from endometrial cancer cells and that levels of s(P)RR in blood and uterine fluid would be elevated in women with endometrial cancer. The levels of s(P)RR were measured with a specific s(P)RR ELISA it was found that all three cell lines secrete s(P)RR into the cell culture supernatant. Also, we found that there was significant amount of s(P)RR levels in plasma samples.

Therefore, we postulated that endometrial cancer growth can be inhibited by drugs that block Angiotensin (Ang) II/Ang II type 1 receptor interactions and prorenin/(P)RR mediated signaling pathways.
Further we looked at the individual effects and combined effects of RAS blockers with ATP6AP2 siRNA on cell viability and cell proliferation in three endometrial cancer cell lines. There was no effect of aliskiren (a renin inhibitor) on cell viability in HEC-1A and AN3CA cell lines. Perindoprilat (an ACE inhibitor) and losartan (an AT1R receptor antagonist) had no effect on the cell viability of any cell line. Another AT1R antagonist, telmisartan, which also acts as a selective agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), did however significantly reduce the viability of the three cell lines (Ishikawa 75%, HEC-1A 50% and AN3CA 60%). The combination of telmisartan + troglitazone had a similar effect to that of telmisartan on its own. Aliskiren + perindoprilat reduced the viability of HEC-1A cells, there was no effect in Ishikawa and AN3CA cells. Conversely, the combination of (P)RR siRNA + telmisartan significantly reduced cell viability and cell proliferation in Ishikawa cells. We also looked at the effect of ovarian steroids (estrogen and progesterone) on RAS expression in two other cancer cell lines (an endometrial cancer cell line (RL-952) and a breast cancer cell line (MCF-7). Treatment with estrogen had no effect on RAS expression in RL-952 or MCF-7 cells.

This study is the first to characterize the functional role of prorenin and (P)RR in endometrial cancer, and to demonstrate that drugs that inhibit the (P)RR and the RAS pathway could reduce endometrial cancer growth. Finally, measurement of s(P)RR could be used as a biomarker for endometrial cancer detection.
Conference Abstracts

Effect of prorenin receptor ((P)RR) knock down and telmisartan on endometrial cancer growth, *Cancer Research*, 2017; (77)-13

Riazuddin Mohammed, Sarah J. Delforce, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers, Kirsty G. Pringle

Effect of (P)RR knockdown and Telmisartan on endometrial cancer growth, *Australian Society for Medical Research (ASMR), HMRI, June-2, Newcastle, 2017- Australia.*

Riazuddin Mohammed, Sarah J. Delforce, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers, Kirsty G. Pringle

Riazuddin Mohammed, Sarah J. Delforce, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers, Kirsty G. Pringle

Riazuddin Mohammed, Sarah J. Delforce, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers, Kirsty G. Pringle

The prorenin receptor as a novel therapeutic target for the treatment of endometrial cancer, *Sydney Cancer Conference, September (22-23), Sydney, 2016- Australia.*
Riazuddin Mohammed, Sarah J. Delforce, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers, Kirsty G. Pringle

The prorenin receptor as a novel therapeutic target for the treatment of endometrial cancer, *Australian Society for Medical Research (ASMR), Hunter Medical Research Institute, HMRI, Newcastle, April 2016 - Australia.*

Riazuddin Mohammed, Sarah J. Delforce, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers, Kirsty G. Pringle

Riazuddin Mohammed, Sarah J. Delforce, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers, Kirsty G. Pringle

Riazuddin Mohammed, Sarah J. Delforce, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers, Kirsty G. Pringle

The prorenin receptor as a novel therapeutic target for the treatment of endometrial cancer, *Australian Society for Medical Research (ASMR), HMRI, April 2015, Newcastle, Australia*

Riazuddin Mohammed, Sarah J. Delforce, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers, Kirsty G. Pringle
Abbreviations

A-LAP - Adipocyte-derived leucine aminopeptidase
ACE - Angiotensin converting enzyme
ACE-1 - ACE mRNA
ACEI - Angiotensin converting enzyme inhibitor
ACTB - Beta-actin mRNA
ADH - Antidiuretic hormone
AGT - Angiotensinogen
AGT - AGT mRNA
AGTR1 - AT1R mRNA
AGTR2 - AT2R mRNA
Ang - Angiotensin
APA - Aminopeptidase A
ARB - Angiotensin receptor blocker
AT1R - Angiotensin receptor blocker
AT2R - Angiotensin II type 2 receptor
ATP6AP2 - (P)RR mRNA
BCA - Bicinchoninic acid assay
cDNA - Complementary deoxyribonucleic acid
CI - Confidence interval
CT - Cycle threshold
D - Deletion
DNA - Deoxyribonucleic acid
DMSO - Dimethyl sulfoxide
DMEM - Dulbecco Modified Eagle Medium
dNTP- Deoxynucleotide triphosphate
DTT - Dithiothreitol
EC - Endometrial cancer
ECC-1 - Endometrial carcinoma cell line 1
EDTA- Ethylenediaminetetraacetic acid
EGF- Epidermal growth factor
ELISA- Enzyme linked immunosorbent assay
ER- Estrogen receptor
ER-α - Estrogen receptor alpha
ERK - Extracellular signal-regulated kinases
FGF-β Fibroblast growth factor beta
FIGO- International Federation of Gynecology and Obstetrics
Fwd - Forward
G - Grade
h - Hour
HEC-1A- Human endometrial carcinoma cells
HRP- Handle region peptide
HRT- Hormone replacement therapy
hVSMCs- Human vascular smooth muscle cells
I- Insertion
IHC - Immunohistochemistry
IRAP- Insulin regulated aminopeptidase
LRP5/6- Low density lipoprotein receptor-related protein 5/6
MAPK- Mitogen-activated protein kinase
MAS1- Mas receptor mRNA
MEM- Minimum essential media
MgCl₂- Magnesium chloride
mM- Millimolar
MRI -Magnetic resonance imaging
mRNA- messenger ribonucleic acid
MVD -Microvascular density
NaOH- Sodium hydroxide
ng/ml- Nanogram/milliliter
nt -Nucleotide
NTC -Non template control
PBS -Phosphate buffered saline
PCR- Polymerase chain reaction
pg/ml- picogram/milliliter
PPAR-γ -Peroxisome proliferator-activated receptor gamma
PVDF- Polyvinylidene difluoride
qPCR -Quantitative polymerase chain reaction
RAS- Renin angiotensin system
REN- Prorenin mRNA
Rev- Reverse
RIPA buffer- Radioimmunoprecipitation assay buffer
RNA- Ribonucleic acid
RR -Relative risk
RT- Reverse transcription
s -Seconds
siRNA- Small interfering ribonucleic acid
TBE - Tris/Borate/EDTA
Tm - Melting temperature
UV - Ultraviolet
V-ATPase - Vacuolar-type H+ ATPase
VEGF - Vascular endothelial growth factor
VEGF - VEGF mRNA
w/v - weight/volume
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMT (Epithelial mesenchymal transition)</td>
<td>26</td>
</tr>
<tr>
<td>Renin-angiotensin system cascade</td>
<td>30</td>
</tr>
<tr>
<td>Tissue RAS</td>
<td>32</td>
</tr>
<tr>
<td>Soluble (Pro)renin receptor (s(P)RR)</td>
<td>33</td>
</tr>
<tr>
<td>Soluble (Pro)renin receptor (s(P)RR) interactions</td>
<td>35</td>
</tr>
<tr>
<td>Localisation of prorenin and (P)RR protein within a tumour and normal adjacent endometrium</td>
<td>38</td>
</tr>
<tr>
<td>mRNA expression of AGT, ACE1 and AGTR1 in tumour tissue and normal adjacent endometrium</td>
<td>39</td>
</tr>
<tr>
<td>Effect of losartan on cell viability in three endometrial cancer cell lines</td>
<td>40</td>
</tr>
<tr>
<td>Effect of telmisartan on cell viability in three endometrial cancer cell lines</td>
<td>41</td>
</tr>
<tr>
<td>1.10 The effect of telmisartan (an ARB) treatment on a mouse model of endometrial cancer</td>
<td>42</td>
</tr>
<tr>
<td>1.11 Effect of HRP on VEGF and ATP6AP2 mRNA abundance in MCF-7 cells</td>
<td>44</td>
</tr>
<tr>
<td>1.12 Effect of ATP6AP2 siRNA in a mouse model of pancreatic ductal adenocarcinoma</td>
<td>46</td>
</tr>
<tr>
<td>1.13 Sites of action of RAS blockers</td>
<td>48</td>
</tr>
<tr>
<td>Overview of xCELLigence machine</td>
<td>67</td>
</tr>
<tr>
<td>mRNA expression of ATP6AP2 in endometrial cancer cell lines</td>
<td>80</td>
</tr>
<tr>
<td>3.2 Effect of ATP6AP2 siRNA on ATP6AP2 mRNA abundance in endometrial cancer cell lines</td>
<td>81</td>
</tr>
</tbody>
</table>
3.3 Effect of ATP6AP2 siRNA on ATP6AP2 protein expression in three endometrial cancer cell lines

Effect of ATP6AP2 siRNA on cell proliferation in endometrial cancer cell lines 85

Effect of ATP6AP2 siRNA on cell viability in endometrial cancer cell lines 86

Effect of ATP6AP2 siRNA on VEGF mRNA abundance endometrial cancer cell lines 87

Effect of HRP, a (P)RR inhibitor on cell viability in three endometrial cancer cell lines 88

Soluble (P)RR (s(P)RR) levels in supernatant samples from non-transfected control in three endometrial cancer cell lines 100

Soluble (P)RR (s(P)RR) levels in supernatant samples from three endometrial cancer cell lines 101

Soluble (P)RR levels in plasma and uterine fluid samples 102

mRNA abundance of REN, AGT, ACE, ACE2 and AGTR1 in three endometrial cell lines 114

Effect of renin inhibitors (VTP-27999, Aliskiren) on cell viability in three endometrial cancer cell lines 115

Effect of an ACE inhibitor (perindoprilat) on cell viability in three endometrial cancer cell lines 116

Effect of ARBs (losartan, telmisartan) on cell viability and cell proliferation in three endometrial cancer cell lines 118

Effect of a PPAR-γ agonist (Troglitazone) on cell viability and cell proliferation and in three endometrial cancer cell lines 119

Combined effect of an ARB (telmisartan) and a PPAR-γ agonist (troglitazone) on cell viability in three endometrial cancer cell lines 133
Combined effect of a renin inhibitor (aliskiren) and an ACEI (perindoprilat) on cell viability in three endometrial cancer cell lines

Combined effect of a renin inhibitor (aliskiren) and an ARB (losartan) on cell viability in three endometrial cancer cell lines

Combined effect of an ATP6AP2 siRNA and an ACE inhibitor (perindoprilat) on cell viability in three endometrial cancer cell line

Combined effect of an ATP6AP2 siRNA and losartan (ARB) on cell viability in three endometrial cancer cell lines

Combined effect of an ATP6AP2 siRNA and Telmisartan (ARB) on cell viability in three endometrial cancer cell lines

Combined effect of an ATP6AP2 siRNA and Telmisartan (ARB) on cell proliferation in three endometrial cancer cell lines

Combined effect of an ATP6AP2 siRNA and Troglitazone (PPAR-γ agonist) on cell viability in three endometrial cancer cell lines

mRNA abundance of ATP6AP2, REN, ACE, ACE2, VEGF and AGTR1 in MCF-7 and RL-952 cells

mRNA abundance of estrogen (ER) and progesterone (PR) receptors in RL-952 cells
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1: International Federation of Gynaecology and Obstetrics (FIGO)</td>
<td>27</td>
</tr>
<tr>
<td>Staging System for Endometrial Cancer</td>
<td></td>
</tr>
<tr>
<td>Primers used in real time PCR</td>
<td>64</td>
</tr>
<tr>
<td>Primers used in real time PCR</td>
<td>77</td>
</tr>
<tr>
<td>Primers used in real time PCR</td>
<td>154</td>
</tr>
<tr>
<td>Summary of ANOVA, residual values for estrogen effect in MCF-7 and RL-952 cell lines</td>
<td>157</td>
</tr>
<tr>
<td>Summary of ANOVA, residual values for progesterone effect in MCF-7 and RL-952 cell lines</td>
<td>158</td>
</tr>
</tbody>
</table>