A PRACTICAL CONSIDERATION OF SCANNING HELIUM MICROSCOPY

Adam Joseph Fahy, BSc (Hons.)

A thesis submitted towards the degree of
Doctor of Philosophy (Physics)
The University of Newcastle, Australia

December 2018
For Jasmin.

Always, and forever.
DECLARATION

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision.

The thesis contains published scholarly work of which I am a co-author. For each such work a written statement, endorsed by my co-authors, attesting to my contribution to the joint work has been included.

The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

__
Adam Joseph Fahy
December 2018

I hereby certify that the work embodied in this thesis contains published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis this written statement, endorsed in writing by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

__
Paul Dastoor
ACKNOWLEDGEMENTS

“Being a writer is a very peculiar sort of a job: it’s always you versus a blank sheet of paper (or a blank screen), and quite often the blank piece of paper wins.”

– Neil Gaiman

Writing these acknowledgements is a rather surreal experience, as it signals an end to the unique mix of triumph and tragedy that is a PhD. I would like to take a moment to thank the long list of people who have helped me in this undertaking – without you, none of it would have been possible.

First and foremost, my thanks to my principle supervisor Professor Paul Dastoor. I have appreciated your wisdom, your patience, and most of all your enthusiasm towards the pursuit of knowledge. Ever since I turned up at your office door as a summer scholarship student (and received an 80-minute long sermon on the virtues of helium microscopy!), you have guided my development into the scientist I am today. To my co-supervisor Dr. Xiaojing Zhou – your invaluable support and wonderful sense of humour have always been sincerely appreciated. My work has benefitted greatly from your input.

When I first started, the helium microscopy at Newcastle consisted of a single PhD student working in a dark corner of a laboratory. To that lone PhD student, the now distinguished Dr. Kane O’Donnell: you managed to take a naïve undergraduate student and introduce him to the true realities of experimental science. Your talent and commitment to your work will always be an inspiration. One of my greatest joys has been to watch the evolution of the SHeM project from this humble beginning into the fully fledged research group we are now. To the members of our team, both past and present – Joel Martens, Therese Pederson, Kirren Thompson, Angus Shorter, Tom Myles, and our most recent addition, Dr. Sabrina Eder – thank
you all. Your labours have been many and varied; from the design and construction of instruments, to onerous data collection, to proof reading parts this thesis! Each and every one of you have provided much-needed comradery in face of the whims of vacuum science. I am indebted to you all, and cannot wait to see what we are able to build together in the future.

Any discussion of the SHeM team would be incomplete without mention of my dear friend and PhD brother in arms, Dr. Matthew Barr. It has been a rare privilege to undertake these long years with a trusted ally there every step of the way. My own growth as a scientist has been bolstered by your remarkable acumen, mechanical expertise, and a dogged determination bordering on the obsessive. Most of all, I have appreciated your generous nature and relentless sense of humour. I cannot ever repay you for the assistance you have provided, but I look forward to trying.

The opportunity to spend three months working at the Cavendish laboratories would have been a daunting experience if not for a research group that welcomed the Australian interlopers with open arms. In particular, I would like to thank Bill Allison, Andrew Jardine, John Ellis, Donald MacLaren, David Ward, Eliza McIntosh, Barbara Lechner, David Chisnall, and Pepijn Kole. The dedication, skill and creativity on display during that period have been a constant source of inspiration during my PhD. Hopefully we can share a few more pints down at the Red Bull soon.

Finally, to my friends and family, and especially to Jasmin – words simply cannot express how much your love and support has meant to me. The patience shown through the entire endeavour has been awe-inspiring, and your ability to find the silver lining in any situation continues to amaze. Thank you for seeing me through.
PUBLICATION LIST

The author and collaborators published the following papers during the term of the present thesis.

A. Publications related to this thesis:

B. Publications not related to this thesis:

ABSTRACT

The established field of Helium Atom Scattering (HAS) has long made use of neutral helium to offer unique opportunities with regards to surface characterisation. A thermal helium atom is an ideal probe particle: strictly surface sensitive, totally inert, a wavelength of the order of typical crystallographic dimensions, and well matched in both energy and momentum to dynamic surface processes. Technological limitations have restricted HAS to broad illumination of a sample surface. The development of a spatially resolved version of the technique - a Scanning Helium Microscope or SHeM - forms the basis for the work presented in this thesis. Such an instrument would prove of great benefit to the wide range of samples (including delicate adsorbate structures, organic molecules and biological materials) which suffer damage under the energetic probes of traditional microscopies.

Chapter 1 first reviews the nature of the helium atom-surface interaction (and the possible contrast mechanisms that arise as a result), before looking at the intensity constraints that have prevented the manufacture of a SHeM previously. Chapters 2 and 3 concern the development of a prototype instrument – the Mark I SHeM. A detailed discussion of the design decisions is included, followed by experimental studies conducted with the new instrument. With the successes found with the prototype, progress then began on creating an instrument from the ground up. Chapter 4 covers the design of the Mark II SHeM, as well as the performance improvements as compared to its predecessor. The experimental investigations into not only samples but the technique itself are explored in Chapter 5. These include studies of image formation, secondary beam effects, contrast mechanisms, and fundamental instrument optics. Finally, Chapter 6 comprises a review of the state of the emerging field with a particular focus on the technical requirements to more fully harness each of the available contrast mechanisms.
LIST OF FIGURES

CHAPTER 1 .. 1

Figure 1.1 Examples of sample damage and image artefacts in high resolution microscopies. (a) The result of scanning electron microscope (SEM) imaging of a ternary blend film consisting of poly(3-hexylthiophene), phenyl-C61-butyric-acid-methyl-ester, and squaraine. All three organic components are known to suffer damage under the energetic probe, as indicated by the dark rectangles in the micrograph. Scale bar is 20um. (b) and (c) show the transmission electron microscope (TEM) and scanning transmission x-ray microscope (STXM) images (respectively) of a matched region of polymer nanoparticles on a silicon nitride window. Whilst the micrographs show that the nanoparticles maintain their structure under the electron and x-ray beams, spectroscopic STXM studies revealed their chemical structure had been permanently altered through the breaking of carbon-carbon double bonds. (d) and (e) show SEM micrographs of silver nanowires and a polyacetonitrile film respectively. Both images display the edge enhancement and charging effects that can occur during SEM imaging. Scale bars are 1um and 10um respectively. Micrographs courtesy of Natalie Holmes. .. 2

Figure 1.2 Comparison of the wavelength as a function of probe energy for photons, electrons, neutrons and helium atoms .. 3

Figure 1.3 Possible scattering mechanisms for a thermal helium atom incident on a surface. Dotted lines represent equipotentials for the helium-surface interaction. Trajectory 1 – elastic scattering, yielding a diffraction pattern characteristic of the surface periodicity. Trajectory 2 – inelastic scattering as a result of energy exchange with phonons or adsorbates. Trajectory 3 – temporary trapping of the impinging atom into a resonant state of the interaction potential. Permanent trapping (adsorption) of the atom is also possible, but very unlikely for thermal helium. Figure courtesy of Barr [32], originally adapted from Toennies [33] and MacLaren [24]. 6

Figure 1.4 Schematic illustrating the classification of the contrast mechanisms for scanning helium microscopy. The contrast available to the technique ultimately stems from the nature of the probe-sample interaction – at the highest level, an elastic or inelastic interaction. From these scattering trajectories, we may define our three contrast mechanisms: topological, diffractive, and chemical (yellow text). .. 8

Figure 1.5 Geometry for the 2D model for topological contrast from a surface with perfect diffuse elastic scattering. The diagram shows two planes (red) inclined by an angle ±θ from a mean plane whose normal (arrow) is itself inclined at an angle β with respect to the detector direction (green). .. 11

Figure 1.6 Schematic drawing of isolated (low-coverage) CO molecules on a Pt(111) surface. The solid line represents the corrugation function (‘repulsive wall’) for a room temperature helium beam. The dashed and dotted semi-circles correspond to the cross-sections of adsorbed CO (ΣCO) and gas phase CO (σCO) respectively. The large cross-sections for helium scattering from these adsorbates are also given, illustrating the sensitivity of a helium beam to individual adatoms. Figure from [25]. .. 15

Figure 1.7 The shape of the effusive beam caused by molecular flow through a channel of length L and radius r can be determined by considering the Knudsen number K and the parameter β. .. 17

Figure 1.8 Schematic representation of a supersonic free-jet expansion. A dense volume of gas is allowed to expand through a small nozzle into a region of lower pressure. The high numbers of interatomic collisions in the initial turbulent flow gives rise to a supersonic expansion outwards from the nozzle. The rapidly decreasing density leads to the flow regime transitioning from fluid flow to free-molecular, with the boundary between traditionally termed the ‘quitting surface’. Past this point in the expansion (the ‘zone of silence’), the gas particles are considered to have a large mean free path and travel along straight-line trajectories. It is typical to sample the centre of the expansion through the insertion of a sharp conical aperture or skimmer into the zone of silence. Schematic adapted from [24]. .. 18
Figure 1.9 A summary of the potential methods for focusing neutral atoms to a point (Image courtesy of [32], adapted from MacLaren [24]). .. 19

Figure 1.10 SEM micrograph of a section of a free-standing silicon nitride Fresnel zone plate used to focus helium beams. The inset shows the outermost zone with an approximate periodicity of 96 nm, demonstrating the technical skill necessary to create structures capable of interacting as desired with neutral helium atoms. Image courtesy of Reisinger et. al. [58]. 21

Figure 1.11 The Cambridge Spin-Echo Neutral Helium Detector, demonstrating the necessary increase in size to compensate for the low efficiency of the electron ionisation process. Image courtesy of David Chisnall. .. 23

Figure 1.12 SEM image of a typical electrochemically etched tungsten tip with end radius of the order of 30 nm. ... 24

Figure 1.13 The first neutral helium images as produced by Koch et. al. [58] of a hexagonal TEM grid. Micrograph (a) was produced with a beam focused down to a 3 micron spot and 8 seconds collection per pixel, while the zoomed region (b) used a 2 micron spot and 14 seconds collection time per pixel ... 26

Figure 1.14 Schematic view of the instrument geometry for the neutral atom microscope. In the most recent iterations, the nozzle is held between 300 and 600 microns from the pinhole aperture, while the working distance is typically between 10 and 50 microns. Together, the minimisation of the distance from source to sample enables the instrument to generate a large helium flux incident on the sample surface. Image courtesy of [87]. ... 26

CHAPTER 2 ... 29

Figure 2.1 Sample simulated micrographs for two materials with 10% contrast and a count rate of 1000 Hz. From left to right, the number of pixels in the sample images are as follows: 16x16, 32x32, 64x64, 128x128, and 256x256. As the pixel count increases the proportional effect of shot noise is diminished, resulting in a clearer distinction between the materials. 30

Figure 2.2 Sample 64 x 64 pixel images produced for a range of count rates and material contrasts. In the planning process for the prototype, it was decided that the build would go ahead if an image of a quality greater than a set level could be produced, represented by the images to the right of the dotted line in the above figure. .. 31

Figure 2.3 A traditional helium atom scattering system; in particular the apparatus at Bell Labs as described by R. B. Doak in [41]. Designs such as this were the starting point for the layout of the prototype SHeM to be built at the Cavendish laboratories. .. 32

Figure 2.4 Schematic diagram of the prototype SHeM. The helium beam source consists of a free-jet expansion, of which the centreline is selected out with a skimmer in the source chamber. The beam passes through a differential pumping stage to the pinhole optics of the instrument, a 5 micron FIB milled pinhole. The result is a thin beam of helium striking the sample surface in the sample chamber, with the scattered helium entering the detector chamber where it stagnates to form a stable pressure. By rastering the sample back and forth under the beam, an image of the surface may be constructed. ... 35

Figure 2.5 Representation of how the gas flow model handles the interaction of the helium beam with the sample surface. The same number of helium atoms incident on the sample from the free-jet beam are then spread evenly into a hemispherical cap centred where the beam strikes the sample. ... 37

Figure 2.6 The previous vacuum system at the Cavendish laboratories, part of which was used to build the prototype SHeM. In particular, the source chamber and section of frame it rests on was repurposed for the new instrument. .. 39
Figure 2.7 Front cross-section of the source for the prototype SHeM, with inset of more detail of the nozzle assembly. The source chamber (green) and Shimadzu TMU2203 turbomolecular pump (brown) were reused from a previous supersonic beam source, as was the welded frame they sat upon. To form the helium source for the prototype SHeM, a new nozzle assembly (red) was constructed in the style of Buckland et. al. [55] with a 10 um nozzle fed by stainless steel pipework (not shown). The nozzle assembly was mounted to an X-Y-Z UHV Designs manipulator (blue) in order to precisely control the position of the nozzle with relation to the Beam Dynamics skimmer (orange). .. 41

Figure 2.8 Photos of the nozzle assembly during construction. Note the designated axes for movement of the nozzle.. 42

Figure 2.9 Sectioned exploded schematic of the DN160CF flange on which the skimmer is mounted. The base of the clamp can be swapped out to change the travel range for the source nozzle relative to the skimmer. .. 42

Figure 2.10 Photograph of the mounted skimmer prior to installation into the SHeM. 43

Figure 2.11 Top cross-section of the prototype SHeM source (green), differential and sample chambers (blue). The differential stage consists of a DN40 tee welded to the front of the sample chamber flange, allowing for a turbo pump to be connected via bellows. The beam passes through the differential stage and onto the sample chamber by passing through the pinhole plate (purple), wherein the pinhole apertures out all but the desired spot. .. 44

Figure 2.12 Illustration of the potential ways to implement a pinhole at 45 degrees to the beam axis (represented by the green arrow). If the pinhole is added normal to the plane of the membrane as in (a), then unless the membrane is thinner than the width of the pinhole line of sight to the sample is lost. In (b) the pinhole is bored along the beam axis, but manufacturing and alignment concerns make this difficult. (c) displays the compromise utilised in the prototype SHeM: A pinhole is bored through a very thin section of material, allowing the beam to pass through as desired. In order to implement this practically, the pinhole substrate was chosen to be a silicon nitride disc with a small membrane section in the center, thus allowing it to handled and glued into position. .. 45

Figure 2.13 Sectioned render of the pinhole plate used to hold the silicon nitride disc with the pinhole bored through the center. The channel to the right shows the beam entry pathway, including the shallow depression on the face of the plate where the silicon nitride disc is located. The second pathway is to allow reflected helium to travel on to the detector chamber. The point where the axes of both channels meet (as shown in the inset) is the sample specular position. .. 46

Figure 2.14 Photograph and optical micrographs of the 5 um pinhole implemented in the prototype SHeM. The silicon nitride disc was glued in place in the pinhole plate with vacuum leak sealant to provide a strong bond and stop extraneous gas escaping around the edges of the disc. As can be seen in the micrographs, the 250 micron square film has the pinhole bored through its center. The rippling of the membrane was caused by the field ion beam milling process. 47

Figure 2.15 Clockwise from top left: Sample slide with Z-distance screw in place and a TEM grid mounted, ready for imaging; Sample mount mechanism assembled out of the chamber (note the designated labels for the movement of the sample); one of the Attocube ECS3030 piezo slipstick drives responsible for the rastering of the sample underneath the beam; the sample mount mechanism assembled and bolted to the pinhole plate, showing the typical imaging position. .. 48

Figure 2.16 Sectional top view of the sample mount (red) along with the pinhole plate (purple) as mounted to the inner wall of the sample chamber (blue). The incident beam axis is marked in dotted lines, with the specular position (and hence the sample location) at the point where it crosses the axis to the detector. .. 49

Figure 2.17 Cross-sectional side view of the sample and detector chambers highlighting the path of the reflected helium atoms from the sample through to the Hiden quadrupole. A 1 mm diameter aperture in the pinhole plate admits a portion of the specularly reflected helium atoms, which then pass through the custom sample chamber flange, onto the detector chamber proper. A stable population builds, which is sampled by the quadrupole. .. 50
Figure 2.18 Photograph from the side of the prototype instrument in operation, with the source chamber on the left and the sample chamber with its turbo pump to the right. Also visible is the cart the source chamber sits on, allowing it to be moved back from the rest of the chambers to provide access for skimmer interchanges and adjustments to the nozzle assembly. ..52

Figure 2.19 Photos of the completed instrument during operation. The top photo shows a top down view of the beam path from source to sample to detector (the latter wrapped in foil for baking purposes at the time). The bottom photo looks back past the detector chamber towards the sample and source chambers. ..53

Figure 2.20 Photograph of the front of the beam control panel, showing the regulators, valves and gauges used when supplying the compressed helium to the nozzle. Behind the panel face sits the Swagelok pipework (see schematic below). Additionally, you can see the helium cylinder to the left, the gas booster at the bottom center, and the dewar which comprises the outer shell of the cold trap to the bottom right. ...54

Figure 2.21 Gas flow schematics of the beam control panel and prototype SHeM. High vacuum stages are shown in black, rough vacuum in blue, high pressure components in red, and gas storage in green. The gas panel allows bottled helium to be compressed to the neighbourhood of 200 bar and then regulated down to the desired stagnation pressure. It should also be noted that the helium was passed through a cold trap in order to filter any remaining impurities. Bypasses link the chambers and thus prevent the possibility of damage to the skimmer or pinhole when bringing the system up to atmosphere (or the reverse)..55

CHAPTER 3.. 57

Figure 3.1 Plot of the corrected source chamber pressure as a function of beam stagnation pressure for the prototype SHeM. The linearity of this data, as shown by the quality of the linear fit (R² value of 0.997), demonstrates the expected performance for a supersonic free-jet beam source. From the slope of the fit – (3.81 ± 0.18) x 10⁻⁵ – we derive an estimate for the effective nozzle diameter of (10.08 ± 0.24) microns, in good agreement with the nominal diameter of 10 microns. ..58

Figure 3.2 Helium signal as detected by the Hiden quadrupole as a function of nozzle-to-skimmer separation both with and without the sample stud sitting at the specular position. Scans were performed with a stagnation pressure of 120 bar at room temperature, and a pinhole plate without pinhole installed between the differential and sample chambers. The difference in signal is due to the helium beam reflecting off the metal surface into the detector aperture.59

Figure 3.3 Theoretical angular distributions for effusive beams under different conditions. (a) Angular dependence of the beam profile on the value of β for a source with a Knudsen number K >> 1. β = ∞ refers to the case of a thin walled orifice, which then causes the effusive beam to follow the familiar cosine distribution. (b) Demonstrates the change when K ≤ 10, and the shape becomes dependant on both K and β. For the given β value of 0.05, the directivity of the beam source can be seen to increase with larger Knudsen numbers. Figure from [51]61

Figure 3.4 Detected helium signal as a function of varying nozzle-to-skimmer separations. At small separations, the pressure in the differential chamber will increase such that the effusive beam will dominate the free-jet beam, producing a broad peak unsuitable for imaging. However, by pulling the nozzle back from the skimmer the differential stage pressure drops and the sharp free-jet beam emerges. Note that the nozzle-to-skimmer separations have a zero offset of up to 1 mm due to the difficulty of aligning the nozzle with the fragile skimmer.................................63

Figure 3.5 Comparison of the differential stage pressures as nozzle position is varied at the extremes of the nozzle-to-skimmer separation from Figure 3.4. At 10mm separation, the helium partial pressure is an order of magnitude smaller than that at the 5 mm separation (1.4 x 10⁻⁵ mBar vs. 1.7 x 10⁻⁴ mBar in the central position). ..63

Figure 3.6 The SHeM micrograph on the left shows a region of a TEM grid before the nozzle-to-skimmer distance was increased, while that to the right was taken afterwards. The appearance of the expected grid pattern with the increase in distance demonstrates the clear difference in instrument performance once the secondary effusive beam contribution is minimised65
Figure 3.7 Scanning helium micrograph (left) and matched reflection optical micrograph (right) of a region of TEM grid mounted using carbon tape on a sample stud. TEM grid has a bar width of 24 um, and a pitch of 84 um. Under the helium beam, the carbon tape appears as bright as the copper grid, while the stainless steel of the stud is much darker.................................. 65

Figure 3.8 SHeM micrographs of a TEM grid demonstrating the problems with drift in the horizontal axis due to a problem with the translation stage. In some instances the stage would drift initially but then work as expected (Figure 3.7 is such an example), while in others it might continually drift throughout the entire scan (left image). The most detrimental type of drift was an inconsistent variation throughout the scan (right image), making post-correction difficult. Note in the right hand image, the transition between the bright and dark areas underneath the TEM grid correspond to the carbon tape / sample stud interface as described for Figure 3.7.............. 67

Figure 3.9 Schematic depicting horizontal drift causing image artefacts. Instead of the expected scan path shown in (a), the problems with the Attocube stage controlling horizontal motion would cause it to drift further in one direction, resulting in the scan path to instead be that shown in (b). ... 68

Figure 3.10 Two SHeM micrographs of adjoining regions of a TEM grid taken in succession. The lack of closed loop control in the scan stages leads to the mismatch in horizontal starting position. .. 68

Figure 3.11 Simplified 2D illustration of masking and shadowing in the SHeM. Image (a) shows a simple sample with a large asperity being scanned under a helium beam (green) as shown by the arrow. When the beam strikes the sample sufficiently far away from the asperity, it makes no impact on the collected helium signal. However, in (b) the sample has been scanned across, leading to the reflected signal from the surface striking the protrusion, meaning that an area is masked due to detector occlusion. Further on at (c), the asperity is now blocking the beam from illuminating a section of the sample surface (shadowing). Note that part of this shadowed region will include the top of the asperity – provided the detector acceptance angle is sufficient, helium striking the top will enter the detector, forming the image at this position. Finally, the asperity moves far enough to no longer impact the incident beam as shown in (d). .. 70

Figure 3.12 Trimetric projection of a simple geometric sample being imaged via SHeM. Red arrow indicates the beam position for a masked area, which results in the cross hatched region of lower intensity. The blue arrow indicates a position where the substrate is shadowed by the sample - in fact, each pixel showing the sample will constitute a shadowed region where the beam was prevented from striking the substrate. Image to the right displays the resultant micrograph. .. 71

Figure 3.13 Illustration of the consequences of the incident beam geometry on the produced SHeM micrographs. The helium beam enters from the right at an angle α relative to the normal for the base plane (for the Mk I SHeM, α=45°), and interacts with a simple sample (a needle). Specular reflections from the sample and base plane are shown via the red arrows, with the detector positioned to the left. Yellow indicates a shadowed region, while blue represents masking. As θ (the angle between the needle and the base plane) increases from 0° through to 180° as shown in the progression from (a) through to (e), the apparent length of the feature (shadowed region) can be seen to change significantly, a phenomena known as projection distortion. When the needle sits normal to the base plane as in (c), the 45° incident beam results in the apparent length equalling the true length. Note that once θ moves past 135° (as in (e)), the shadowed region appears to reverse direction, with the far side of the needle now exposed to the helium beam. .. 72

Figure 3.14 Plot of the scaling factor SF = sin(θ) + cos(θ) in a SHeM micrograph for a feature (needle) at an angle of θ (see inset) with respect to the sample slide. A plane tilted away from the incident beam (0° < θ < 90°) will appear longer in a SHeM micrograph, while those tilted towards the beam (90° < θ < 180°) will appear shorter. Negative values of the scaling factor (135° < θ < 180°) indicate the apparent length of the plane has reversed direction (for example, would appear to the right of the base of the needle as shown in Figure 3.13 e). Note that this scaling factor will only apply in the horizontal scan axis – in the vertical direction the image will be in direct correspondence with the sample. .. 74
Figure 3.15 Optical image of the section of TEM grid to be imaged, mounted on the sample stud (white area) with carbon tape (black). A drill bit had been used to excise the central portion of the grid to allow it to function as a locator for other samples, resulting in damaged spars being bent at a variety of angles with respect to the plane of the grid. The box indicates the region imaged in Figure 3.16. ... 75

Figure 3.16 Scanning helium micrograph (left) and matched reflection optical microscope image (right) of a region of TEM grid mounted via carbon tape. The SHeM micrograph shows both masking and shadowing due to the carbon tape below the grid and the bent spars of the grid sitting above the bulk of the sample (respectively). Letters (a) through (f) correspond to features detailed in the text overleaf... 75

Figure 3.17 Schematic cross-section of the helium trajectories interacting with the bent TEM grid. Scan positions represented by (a) and (b) will result in dark areas in the final image (as in the top right of the micrograph) due to masking and shadowing respectively, with the bulk of the helium beam unable to make it to the detector. (c) and (d) will yield bright regions in the produced micrograph, with (c) the more intense as the mean plane is tilted towards the detector, as well as being closer to the entrance aperture... 76

Figure 3.18 Optical microscopy of a typical copper TEM grid such as that imaged first in the prototype SHeM. Detail callout shows the very rough surface of the grid, leading to diffuse scattering of the helium beam. Scale bar is 40 microns in length. ... 77

Figure 3.19 Location of the three linescans across the edge of a TEM grid spar used to obtain an estimate for the resolution of the prototype microscope. ... 79

Figure 3.20 Result of the averaging of three vertical line profiles across the edge of a TEM grid as imaged by the prototype SHeM. Note that the intensities have been normalised for ease of analysis. Looking at the sample travel required to move from 20% to 80% of the intensity, an instrument resolution of (3 ± 2) microns is obtained. ... 80

Figure 3.21 Optical micrograph (top) and matched scanning helium micrograph (bottom) of a section of wing belonging to the fly species musca domestica. The SHeM micrograph reveals much more of the detail in the transparent surface, including the convoluted folds of the wing membrane. Note that due to the surface sensitive nature of the neutral helium probe particle, the SHeM micrograph contains only information from the top side of the wing (unlike the optical). 83

Figure 3.22 SHeM micrograph of a section of fly wing overlaid on a composite of optical images of the same sample. Such a large image (100 x 400 pixels) required the instrument to scan for approximately 48 hours. Scale bar is 300 microns in length. ... 84

Figure 3.23 Cropped section of the SHeM micrograph shown in Figure 3.21. Rescaling the colour based on the intensities in this smaller portion allows more of the detail to be visible, including the hairs attached to the top edge of the wing. ... 85

Figure 3.24 Top down SEM (left) and optical micrographs (right) of the ‘Universal Resolution Sample’ available from Agar Scientific (AGS1937). SEM image from the technical data provided by Agar Scientific [109]. The sample consists of tin spheres laid down on a mechanically polished carbon substrate, with spheres sizes ranging from approximately 30 microns in size down to less than 5 nanometres. In addition to resolution and masking effects, the sample is of interest to SHeM due to the difference in the two materials (visible as the contrast in the SEM micrograph). ... 87

Figure 3.25 SHeM micrographs of the tin sphere sample. In the left image, each pixel represents a step of 1.1 microns, while on the right 1.3 microns. Note that the beam enters from the bottom (90 degree rotation as compared to previous SHEM micrographs) to guide the eye. ... 87

Figure 3.26 Section of SHeM micrograph showing a single tin sphere. ... 88

Figure 3.27 Micrographs of a section of polymer bonded explosive as imaged via SHeM (left) and a polarised reflection optical microscope (right). The sample in question had been mechanically polished flat to within 50 nanometres, leading to the likely source of contrast in the image being topological contrast below the resolution limit of the instrument (i.e.: roughness). Pixels in the SHeM micrograph represent a sample movement of approximately 4 microns. 89
Figure 3.28 Cross-section of the prototype SHeM highlighting the shape and size of the differential pumping stage. The length of the chamber (indicated by the red arrow) along with the remote placement of the turbo pump would ideally be changed in the next generation of the instrument, meaning a fundamental redesign. ... 92

CHAPTER 4 .. 95

Figure 4.1 Schematic diagram of the SHeM II system. Using a 10 μm nozzle, a supersonic free-jet expansion of neutral helium is produced in the source chamber. A skimmer samples the centerline of the expansion, which then passes into the differential stage. The optics of the instrument consists of a silicon nitride membrane with a FIB milled pinhole mounted into a metal plate (see inset). The beam is incident on the back of this membrane, leaving a small spot of helium free to strike the sample. The sample itself is able to be rastered underneath the beam via three linear drives to facilitate imaging. A portion of the helium reflected from each point on the sample surface passes through a second aperture in the pinhole plate into the detector chamber, where the stagnation pressure is sampled to yield the intensity. ... 97

Figure 4.2 Photograph of the Mark II SHeM constructed at the University of Newcastle. Visible on top of the system frame is the source chamber to the left, attached to the sample chamber (door with the window in the center). Along the back wall can be seen the gas panel responsible for the compression and regulating the helium supply to 200 bar, fed into the top of the source chamber through the visible thin pipework. The black insulated gas lines are those bringing chilled nitrogen into the same source assembly. ... 98

Figure 4.3 Photograph of the Mark II SHeM displaying (from left to right) the Hiden quadrupole control box, the detector chamber and pumping connections, the box chamber housing both the sample and differential stages, and finally the source chamber including helium and nitrogen gas supply lines. Note that the pipework for the chilled nitrogen gas (braided cables) has not yet been insulated in this photo (as compared to Figure 4.2 previous). ... 99

Figure 4.4 Gas flow schematic for the Mark II scanning helium microscope. High vacuum stages are shown in black, rough vacuum in blue, high pressure components in red, and gas storage in green. .. 100

Figure 4.5 Cross-sectional schematic of the Mark II SHeM source chamber as viewed from the front. The source chamber (green) was pumped by a large turbo pump (Edwards STP-iXR2206) through the bottom ISO250 flange. A nozzle assembly (red) based on the style of Buckland et. al. [55] with a novel cooling system was mounted to an UHV Designs manipulator (blue) allowing precise control of the nozzle relative to the skimmer. ... 102

Figure 4.6 Plot of the corrected source chamber pressure as a function of beam stagnation pressure for the Mark II microscope. Linear fit to data has an R^2 value of 0.991 (indicating the source was functioning correctly) and a slope of $(3.39 \pm 0.25) \times 10^{-5}$. From the latter, we derive an estimate for the effective nozzle diameter of 10.10 ± 0.37 microns, in good agreement with the nominal diameter of 10 microns. .. 103

Figure 4.7 Schematic cross-sectional diagram of the helium beam source for the Mark II SHeM design. A Buckland-style nozzle assembly [55] with a (nominally) 10 micron aperture was constructed, capable of withstandiong stagnation pressures of at least 250 bar at cryogenic temperatures. The stainless steel pipework that supplied the compressed helium to the nozzle was passed through a larger outer pipe as shown, allowing a counter current of chilled nitrogen gas to provide cooling. Copper blocks on the nitrogen inlet and surrounding the nozzle assembly, linked by a copper bridge piece, acted to stabilise the temperature. Surrounding the nozzle copper block was a heater clamp, allowing the stagnation temperature to be precisely set via a PID controller. .. 104

Figure 4.8 Photograph of the source assembly for the Mark II. Surrounding the hexagonal VCR cap at the centre (holding the 10 micron aperture) is a copper block followed by a heater clamp to enable control over the temperature of the stagnation volume when used in concert with the counterflow of chilled nitrogen gas. Also visible to the top left is the secondary copper block on the nitrogen inlet pipe, as well as copper braid connecting the two cooling blocks (an initial linkage that was eventually replaced by the solid copper bridge shown in Figure 4.7). 105
Figure 4.9 Plot of the temperatures at the top of the source chamber manipulator as well as the two copper blocks as a function of time during operation of the cooling system. Also included is the source chamber pressure, observed to increase due to the change in centreline intensity predicted by equation 3.1 with gas temperature. ...106

Figure 4.10 3D render of the skimmer mounting plate (blue) and clamping ring (red) used to secure a 100 micron ‘Model 2’ skimmer as produced by Beam Dynamics Incorporated. The mounting plate may be swapped out for other versions with different depths, thus allowing the distance from skimmer to pinhole to be varied...107

Figure 4.11 Top-down cross-sectional schematic of the redesigned differential pumping stage. On the left, the 8” CF flange forming the edge of the source chamber (including nozzle assembly in red) is visible. The flange joins to the side of the box chamber (brown) containing both the differential and sample chambers, separated by an internal wall. Just inside the connection, the skimmer mounting plate (see Figure 4.10) sits, aligning the skimmer to the beam axis and setting the skimmer to sample distance. The center of the expansion produced by the nozzle is selected out by the skimmer, passes through the differential stage, and enters the back of the pinhole plate via a hole in the internal wall to be incident on the silicon nitride membrane with pinhole. Reflected helium from the sample is able to pass through to the detector volume via a 1 1/3” half nipple internally welded to ensure isolation from the differential volume. Note the visible 4.5” port on the bottom of the differential stage, allowing the direct connection of an Edwards EXT75 DX turbomolecular pump to ensure maximum pumping to the volume. ...108

Figure 4.12 3D render of the connection between the source and differential chambers, with various levels of sectioning to help illustrate the complex geometry used to ensure a condensed beam path while still allowing significant pumping...109

Figure 4.13 Top-down cross-sectional schematic of the box chamber comprising the differential and sample volumes. Note that for simplicity, the sample mount and the hinged door which forms the front wall have been omitted. ...111

Figure 4.14 3D render of the full sample mount which consists of a base plate, stand, three Attocube ECS3030 units to drive the sample in the X, Y, and Z axes as shown, and the three-pin kinematic mount into which the sample slides are placed. Inset shows a photograph of the stacked ECS3030 stages and kinematic mount with sample slide...112

Figure 4.15 Photograph of the inside of the sample chamber with the top level of the sample mount removed, illustrating the placement in front of the pinhole plate. ...113

Figure 4.16 Sectioned 3D drawing of the detector chamber. The Hiden quadrupole (red) sits tightly within the main body of the chamber, minimising the stagnation volume. Further in this regard, the DN16CF gate valve (green) used to isolate the detector has been incorporated directly into the sheath. A small turbomolecular pump (Edwards EXT75 DX) is connected to the main body of the chamber via two DN40CF butterfly valves (blue). By changing the extent to which each valve is opened, the pumping on the stagnation volume can be controlled by the user. ...116

Figure 4.17 3D render of the system frame, constructed from steel I-beams (red) and hollow square section (green). The entire frame was supported by three novel vibration isolators (callout). Also visible are the linear bearing rails (yellow) used to support the source chamber cart and allows access to the nozzle assembly or skimmer as required..117

Figure 4.18 Screenshot of the LabView user interface for the Mark II SHeM. In addition to the basic control over the current position of the sample and the parameters of the scan to be run, the program also shows the image currently being generated along with a profile for the current horizontal line. Furthermore, once a scan is complete, the datafile can be reopened in this interface and a region boxed to start a new scan. As such, imaging features of interest within a prior scan becomes very quick and easy, especially as compared to the Mark I instrument. ...118

Figure 4.19 Illustration of the ‘locator scan’ used when first loading a new sample slide into the Mark II SHeM. An optical image (typically either an optical micrograph or, as in the left image above, a photograph) would be matched to a quick, large area SHeM scan (right image) in order to identify all major features. By selecting smaller regions of this large scan, high resolution images were produced. Scale bar is 1 mm in size. ...119

Figure 4.20 Helium beam path through the microscope geometry, broken down into smaller sections for the purpose of comparing the improvement of the Mark II over its predecessor...120
Figure 4.21 Illustration of the potential extension of the pinhole plate from its current geometry (dotted line) to a point much closer to the sample surface, the effect of which is a reduced working distance and a much larger count rate. .. 121

Figure 4.22 Matched optical (left) and neutral helium (right) micrographs of a copper TEM mounted to a sample slide with a central hole. SHeM micrograph produced using a 1.3 second dwell per pixel and a step size of 12.5 um. Scale bar is 200 microns in length. 122

Figure 4.23 Detected helium signal as the nozzle is scanned across the skimmer for a series of nozzle-to-skimmer separations for the Mark II SHeM. For said experiment, a 200 bar beam at room temperature was utilised. In stark contrast to the similar plot collected for the Mark I, even with the nozzle at closest approach the free-jet beam is observed to dominate, although the presence of the effusive beam is still visible in the broad shoulders for this scan. Pulling the nozzle further back diminishes the pressure in the differential stage and hence lowers the effusive beam intensity (at the cost of some loss to the available centrelime intensity). Note that the nozzle-to-skimmer separations have a zero offset of up to 1 mm due to the difficulty in aligning the nozzle to the fragile skimmer. .. 123

Figure 4.24 Plot of maximum differential chamber helium partial pressure as a function of nozzle position. Helium through the skimmer orifice is inversely proportional to the square of the nozzle-to-skimmer separation, as shown by the quality of the inverse-square fit (blue dashed line, $R^2 = 0.999$). .. 125

CHAPTER 5 ... 127

Figure 5.1 SHeM micrograph of a hexagonal TEM grid produced with the Mark II scanning helium microscope using a 3 micron step size (scale bar is 100 microns in length). The helium beam strikes the sample from the right side of the image, with the detector aperture sitting to the left. Suspension of the grid off the substrate with carbon tape yields the strong helium shadows observed beneath the grid. .. 127

Figure 5.2 Matched optical (left) and neutral helium (right) micrographs of a copper TEM grid (Ted Pella part number: 8GC90) mounted to a sample slide with a central hole. SHeM micrograph produced using a step size of 12.5 um; scale bar is 200 microns in length. The pitch of the grid (indicated by doubled headed arrow) as measured from the micrograph is (280 ± 25) microns – well matched to the expected value of 282 microns as provided by the manufacturer. 128

Figure 5.3 SHeM micrograph (10 micron step size, scale bar 200 microns in length) of the central portion of a Norcada silicon nitride x-ray window (part number NX5025Z), with dimensions of the window shown to the right. The projection distortion of the image along the plane of the beam and detector (horizontal plane in the SHeM micrograph) is clear. While the square outer edge of the frame remains unchanged (as a feature parallel to the base plane), the size of the inclined planes down to the actual membrane in the center are different depending on orientation. The inclined planes are steeper than the incident beam, and as such a portion of the square membrane is shadowed and thus blocked from view. .. 129

Figure 5.4 Left: SHeM micrograph of a sugar crystal adhered to a carbon dot (500 micron scale bar, 6 micron step size). Right: CAD render of a replica crystal with light source and camera positioned in the same arrangement as in the SHeM. Note however that the camera and light source had to be swapped in order to produce the shadow as in the SHeM image (shadowing versus masking). .. 130

Figure 5.5 SHeM micrograph of a sugar crystal adhered to a carbon dot (500 um scale bar, 6 micron step size). The relative intensities of the various faces make sense if we consider the helium to scatter predominantly diffusely from the crystal surface. The brightness of side ‘4’ as compared to ‘3’ - despite also being obscured from the detector aperture - is due to multiple scattering events with the carbon substrate. .. 131

Figure 5.6 Assuming predominantly diffuse scattering from the sample surface, the schematic illustration shows how each crystal face (labelled as in Figure 5.5) results in different amounts of helium able to make it to the detector. While face ‘3’ reflects helium back towards the incoming beam, ‘4’ has a much greater opportunity to cause multiple scattering events with the assistance of the substrate, leading to a greater intensity in the final micrograph. .. 132
Figure 5.7 (a, b) SHeM micrographs of a section of TEM grid (such as shown in the optical micrograph (c)) acquired at working distances of 1.98 and 3.40 millimetres respectively. Note that the range of intensity values has been set identically for both micrographs to allow direct comparison. The masked region caused by the spar in the SHeM images (see arrows) can be observed to shift position, and details such as the shallow depression along the center of each of the TEM grid spars (diamond arrowhead in (a), and visible as a difference in shading in the optical micrograph (c)) become more evident at smaller working distances. ..133

Figure 5.8 Schematic illustrating the effect of different working distances on the scattering geometry. Moving the sample closer to the pinhole plate is achieved by varying the Z-position - by then adjusting the X-stage similarly, we can bring the same feature back into line with the beam. As the different coloured cones suggest, the alteration of working distance changes the relative position of the detector aperture, as well as its acceptance angle.134

Figure 5.9 SHeM micrographs of a TEM grid suspended over the edge of a section of carbon tape conducted at different working distances (calculated from known sample to pinhole separations), namely (a) 0.74, (b) 1.44, (c) 2.15, (d) 2.86 (specular), (e) 3.56, (f) 4.27, (g) 4.98, (h) 5.69, and (i) 6.39 millimetres. As the effective detector angle changes, the masked area of the sample surface by the grid spar can be seen to shift, giving a rudimentary form of 3D imaging. ..135

Figure 5.10 Plot of the magnitude of the topological contrast as given by equation 5.1 for a range of values of θ and δ. Note that when the condition that θ + δ < 90° is broken (ie: the detector line-of-sight is blocked - top right half of the plot), the contrast has been set to zero for clarity. The region between the blue dot-dashed lines indicate the range of θ values for the Mark II SHeM with the sample at specular..137

Figure 5.11 (a) Anaglyph of a sugar crystal as built from two SHeM micrographs as imaged using (b) a new sample mount (CAD render) for the Mark II SHeM designed by Myles [123]. The sample mount allows for two modes of 3D imaging and is currently undergoing testing at the time of writing. ...138

Figure 5.12 (a) SHeM micrograph of a TEM grid adhered to a cleaned silicon wafer with a small piece of carbon tape (20 micron step size used; scale bar represents 1 millimetre). (b) and (c) show sections of the grid – indicated by the square shown in (a) – imaged using a beam with differing ratios of supersonic to effusive beam. (b) shows the grid as imaged with the raw supersonic beam and effusive contribution native to the SHeM with a nozzle-to-skimmer separation of 11 mm, while (c) includes a more significant effusive beam contribution. To cause the latter, the differential chamber had an additional 4.0 x 10^-4 millibars of diffuse helium added. Note that (b) and (c) use the same range of intensities – centred on the median intensity for each micrograph to account for the differences in raw count rate – to allow for direct comparison. The increase in the secondary beam causes an increase in noise present and reduces the available contrast. ..140

Figure 5.13 (a) Photograph of the beam entry into the pinhole plate in its original form. (b) and (c) show schematic diagrams of the beam entry to the pinhole plate before and after the alteration to improve pumping around the pinhole (respectively). The bored-out pinhole plate improves the pumping around the pinhole and results in a reduced effusive beam accompanying the main supersonic free-jet beam. ..143

Figure 5.14 SHeM micrographs of a salt crystal illustrating improvement to the pumping around the pinhole. (a) uses the original pinhole plate, and was collected using an 8 micron step size, while the pinhole plate in (b) had been opened up to improve pumping (7 micron step size). Both images were collected at otherwise identical beam and detector conditions, with colour-bar indicating the relative count rates. Scale bars are 250 microns in length. ..144

Figure 5.15 (a) Histogram of the pixel intensities for the SHeM micrographs collected of the salt crystal with the original (red) and modified (blue) pinhole plates (as seen in Figure 5.14). The difference in count rates is immediately apparent. (b) is the same data but after each set of intensities have been normalised to zero background, allowing a more direct comparison of the shape of the intensity distributions and revealing the broadening of peaks associated to certain sample features by the effusive beam..145
Figure 5.16 SHeM micrographs of a honey bee (Apis Melifera) eye as imaged with different effusive contributions. (a) Replicates the larger effusive contribution of the Mark I SHeM with an additional 4.0 x 10^-4 millibars of diffuse helium added to the differential chamber; (b) is the original pinhole plate; while (c) uses the modified pinhole plate with better pumping in the vicinity of the pinhole. All scans use a 2 micron step size, and all scale bars are 100 microns in length. As the size of the effusive contribution is reduced from (a) to (c), the image quality clearly increases – despite the lower total count rates. 146

Figure 5.17 Sample mounting geometry for enhancing contrast in thin films (side and top views). The sample – in this illustration a TEM grid - is suspended over a gap in the mounting plate, allowing helium that passes through the sample to quickly become part of the background. 149

Figure 5.18 SHeM micrographs of a section of TEM grid onto which portions of a spin-cast C60 organic film have been floated. (a) Survey scan (200 micron scale bar, 15 micron steps) of the grid showing how it has been placed over a hole in the sample slide to allow helium to pass through to form a transmission-like image. Boxed region indicates the scan area shown in (b), a higher resolution image (50 micron scale bar, 2 micron step size) showcasing the increased contrast afforded. While the transmission-like mounting immediately reveals all the holes that form in the spin-cast film, the reflection mode image contains information that would be either very difficult or impossible to determine from a purely transmissive image (for example, the placement of each piece of film on the grid surface, especially for the curled sections in the top right of the image). 149

Figure 5.19 Matched micrographs of a butterfly wing (Tirumala hamata). (a) Reflection optical micrograph (Leica M205 C), scale bar 600 micron. (b) Scanning helium micrograph as imaged with the Mark II SHeM with 8 micron steps, scale bar 600 micron. (c) SHeM micrograph of region indicated by square in (b) using 4 micron steps, scale bar 100 micron. (d) SHeM micrograph of another area of the wing taken with 4 micron steps, highlighting the shape of the wing scale (scale bar 50 micron). 151

Figure 5.20 Comparison of reflection optical (Leica M205 C) (a,c) and SHeM (b,d) micrographs of a honey bee wing (Apis mellifera) as an example of topological contrast. Bottom images taken from the square region indicated in (a). SHeM micrographs collected with (b) 8.75 micron and (d) 2 micron steps. Scale bars are 500 and 50 microns for (a, b) and (c, d) respectively. 153

Figure 5.21 (a) SEM micrograph of a 40 nanometre thick gold University of Newcastle logo produced via electron beam lithography at the ACT node of the ANFF network. Identical logos in other metals (chromium, nickel and platinum) were produced for the purposes of an investigation into chemical contrast with scanning helium microscopy. (b) SHeM micrograph of the same sample. Image was collected with a 12 second dwell per pixel, and a 7 micron step size. Despite the clear appearance of the logo, the contrast is much smaller than any of the scans shown previously. Scale bars in both micrographs are 50 microns in length. 155

Figure 5.22 SHeM micrographs of the 15 nanometre thick gold University logo partially obscured by a piece of dust. (a) Full image taken with the sample at specular, while (b) shows a section of the sample at the same position. (c,d) Small region of the sample at 500 and 1,000 μm further back from the pinhole respectively. Scale bar 50 microns. 156

Figure 5.23 SHeM micrographs of the 40 nanometre thick University logos in different metals on pieces of the same silicon substrate. Clockwise from top left: (a) gold (b) nickel (c) platinum and (d) chromium. Scale bar is 50 microns in length. In all four images, the intensities have been normalised relative to the silicon background in order to make a direct comparison between the metals possible. Additionally, some of the collected micrographs have been rotated, thus changing the directions so far associated with the incident beam and detector pathway. 158
Figure 5.24 SHeM micrographs demonstrating the dependence of the observed contrast for the 15 nanometre thick gold-on-silicon sample with helium mean beam energy. All scans were performed with the sample in the specular imaging position, at room temperature (294K), and using a 200 bar stagnation pressure beam. Utilising the heating/cooling system for the beam described previously, beam energies of (a) 83, (b) 72, (c) 66, (d) 42, and (e) 21 meV were achieved. Below the experimental results are simulated micrographs, testing whether count rate changes were the cause of the observed differences. Simulation 1 involved matching the average count rate and noise levels for each original micrograph, with the contrast level constant as determined from the 66 meV image. Simulation 2 went a step further, and included a variable contrast between the gold and silicon. Comparisons of the experimental and simulated micrographs led to the conclusion that there was an additional contrast mechanism at play...161

Figure 5.25 SHeM micrograph of a rough silicon oxide surface which had been masked with a TEM grid and a sub-nanometre thick gold film thermally evaporated. Even with the topographic feature provided by the carbon tape (bottom left corner), the chemical contrast allows for the location of the gold film to be seen easily (darker regions on the flat sample area). Inset shows a section of the masked surface if the count rates are limited to those due to the gold film on the silicon oxide surface. Scale bar 250 microns in length. Micrograph collected in collaboration with Dr. Sabrina Eder..163

Figure 5.26 Comparison of the two most likely candidates for the beam profile, namely a top hat distribution (a) and a Gaussian distribution (b). Determining the intensity profile of the beam directly is difficult – instead, by scanning the beam across a feature (typically a sharp edge) in one dimension, the line spread function (LSF) can be found...166

Figure 5.27 Edge Spread Function (ESF) and Line Spread Function (LSF) for the Newcastle SHeM for the most common imaging parameters. The ESF is found by scanning the beam spot across a silicon knife edge placed at the specular position (in half micron steps), while the LSF is found by numerically differentiating the ESF. Note that the ESF has had a 3 pixel moving average smoothing filter applied for reasons of noise and the ends padded to simplify the resultant LSF. ..166

Figure 5.28 Result of convolving the Gaussian fit for the LSF from Figure 5.27 with a periodic grid. The grid spacing sets the size of the dip in the central intensity for the convolution, corresponding to different resolution definitions. (a) Rayleigh Criterion (~26.5% difference in intensity), achieved by a separation of 4.8 microns. (b) A grid spacing of 2.8 microns results in the convolution obeying the Dawes Limit (~ 3% difference in intensity). The latter criteria agrees well with the observed contrast for the instrument, and so 2.8 microns is taken as the resolution for the most common imaging parameters used. ..168

Figure 5.29 Top: ESF and LSF for the Mark I SHeM, obtained from the vertical profiles shown in Figure 4.19. The ESF has had a 3 pixel moving average filter applied and the ends padded. The Gaussian function fit to the LSF is in good agreement (R-squared value of 0.991), and yields a FWHM of (5.4 ± 0.2) microns. Bottom: Results of convolving the Gaussian beam profile for the Mark I SHeM with a periodic feature with separation of 1.5 microns to satisfy the Dawes Limit. ..169

Figure 5.30 Top: Gaussian fits to the LSFs derived from horizontal knife-edge scans for three different pinhole arrangements for the Mark II SHeM. Note that the scans have been aligned to the peak of the Gaussians for ease of comparison. Bottom: Full width half maximum values for the three different pinholes extracted from the Gaussian fits. ..171

Figure 5.31 SHeM micrographs of the edge of a butterfly wing as imaged using different pinhole diameters, namely (a) 5 microns and (b) 2 microns. Both scans were conducted with identical beam conditions, and used 1.5 micron steps (scale bars 50 microns in length). While it can be seen that the micrograph utilising the 2 micron pinhole is indeed sharper than the 5 micron, the improvement to resolution was not comparable to the reduction in pinhole diameter. Also note the effects of the reduced intensity in (b), especially the prevalence of noise. ..172
Figure 5.32 Schematic illustrating the trajectories of atoms expanding through the nozzle of a free-jet beam source transitioning from hyperbolic arcs to straight lines known as streamlines. Tracing these streamlines back to the expansion axis, we find what is termed the virtual source point from which they appear to emanate. The virtual source plane in then defined as the plane perpendicular to the expansion axis through this point. Figure adapted from Beijerinck et. al. [101]. .. 173

Figure 5.33 Schematic diagram illustrating the concept of the virtual source for a free-jet expansion. By mapping the distribution of trajectories at the quitting surface back to the virtual source plane, we may define the virtual source. The perpendicular velocity distribution of the atoms in the expansion as they leave the quitting surface is the critical parameter describing the resultant size of the virtual source. Image courtesy of Barr [32]................................. 174

Figure 5.34 FWHM values extracted from the Gaussian fitting for horizontal knife-edge scans conducted at various nozzle-to-skimmer separations. All scans were conducted using a 200 bar beam with room temperature stagnation volume and a Beam Dynamics Type 2 skimmer with nominal diameter of 120 microns. No trend was observed in the data, indicating the independence of instrument resolution from the nozzle-to-skimmer separation. ... 175

Figure 5.35 FWHM values extracted from the Gaussian fitting for vertical knife-edge scans conducted at different beam stagnation temperatures. All scans were conducted using a 200 bar beam and a Beam Dynamics Type 2 skimmer with nominal diameter of 120 microns. The width of the beam profile increases with increasing stagnation temperature, as would be expected considering the monochromaticity of the beam source and hence any potential broadening effects. Data is fit well ($R^2 = 0.999$) by a linear function as indicated by the dotted line. 177

Figure 5.36 FWHM values extracted from the Gaussian fitting for horizontal knife-edge scans performed with a range of skimmer sizes. Beam Dynamics Type 1 skimmers with nominal diameters of 100, 200 and 510 microns were used, with a nozzle-to-skimmer separation of 15 millimetres. Beam stagnation was 200 bar, room temperature, and the modified 5 micron pinhole plate formed the final optical element. A direct dependence of the beam profile width with respect to skimmer diameter can be seen, indicating the skimmer forms the restricting element in terms of resolution. .. 179

Figure 5.37 Experimental LSF data and associated Gaussian fits for horizontal knife-edge scans performed with Beam Dynamics Type 1 skimmers with nominal diameters of (a) 100, (b) 200, and (c) 510 microns. ... 180

Figure 5.38 Schematic of the beam geometry used for equation 5.8 describing the size of the spot produced on the sample surface by geometric optics. For the Mark II SHem, the virtual source diameter is taken as the skimmer orifice diameter, in contrast to the original use of the formula whereby the quitting surface was used. Figure after Witham [86].................................. 182

Figure 5.39 Plot of the spot diameter for the Mark II SHem as found experimentally with knife-edge scans and via a geometric optics model for different skimmer diameters. The experimental spot size was taken as the full width tenth maximum as calculated from the Gaussian fitting to the LSFs as described previously. Both data series have been fitted with linear trends as a point of comparison. .. 182

CHAPTER 6 .. 185

Figure 6.1 The first neutral helium images as produced by Koch et. al. [58] of a hexagonal TEM grid. Micrograph (a) was produced with a beam focused down to a 3 micron spot and 8 seconds collection per pixel, while the zoomed region (b) used a 2 micron spot and 14 seconds collection time per pixel.. 186

Figure 6.2 Schematic of the optical layout for the first neutral helium images [58]. By having the helium beam pass directly through the sample to strike the detector an image may be produced in a manner analogous to transmission mode optical. The resolution of the produced TEM grid image was 1.9 ± 0.1 microns, limited by the chromatic aberrations of the zone plate acting as the focusing element. .. 187
Figure 6.3 Schematic view of the instrument geometry for the neutral atom microscope. In the most recent iterations, the nozzle is held between 300 and 600 microns from the pinhole aperture while the working distance is typically between 10 and 50 microns. Together, the minimisation of the distance from source to sample enables the instrument to generate a large helium flux incident on the sample surface. Image courtesy of Witham et. al. [87].

Figure 6.4 Micrographs as produced by the Neutral Atom Microscope (‘NAM’). (a) 50nm thick crumpled gold film overlaid on mica background (scale bar 40um). (b) Multilayer graphene (scale bar 50um). (c) Crocosmia pollen grain (scale bar 30um). Images courtesy of Witham et. al. [87].

Figure 6.5 Plot of the magnitude of the topological contrast as given by equation 5.1 for a range of values of θ and δ. Note that when the condition that $\theta + \delta < 90^\circ$ is broken (ie: the detector line-of-sight is occluded - top right half of the plot), the contrast has been set to zero for readability. The region between the blue dot-dashed lines indicate the range of θ values for the Mark II SHeM, while that between the red dashed lines show the equivalent for the NAM.

Figure 6.6 Plot of the signal-to-background ratio as a function of source chamber pump rate (controlled via the pump rotation speed). Signal-to-background ratios determined from reflected intensity on and off a silicon wafer. Data courtesy of Matthew Barr [32].

Figure 6.7 Plot of the signal-to-background ratio as a function of sample chamber pump rate for a section of flat silicon oxide surface. Silicon chip was mounted above a hole in a sample slide, with the background taken as the count rate obtained from the hole. Note that the experiment utilised an original Mark II pinhole plate, resulting in sub-optimal signal-to-background ratios.

REFERENCES
LIST OF TABLES

CHAPTER 1

Table 3.1
Comparison of the modelled performance characteristics of the prototype microscope with those found experimentally for a 200 bar beam at 295K. Note that the count rate, noise, and signal-to-background are all dependent on the sample under investigation – the values given are representative.

CHAPTER 2

Table 4.1
Comparison of the distances making up the total beam path length for the two SHeM systems. The changes to the shape of the chambers mean the Mark II beam path length is much shorter, contributing to an improved count rate.

CHAPTER 3

Table 5.1
Comparison of the quality of the micrographs presented in Figure 5.12 (b) and (c) due to the influence of the stronger effusive beam. The signal-to-background ratios and Michelson contrasts are produced by comparing the brightest and darkest features within the image, namely the silicon substrate and the TEM grid edges. It should also be noted that for the signal-to-noise ratio, the minimum intensity in both micrographs was set to zero (as discussed in the text).

Table 5.2
Image quality metrics pulled from the micrographs shown in Figure 5.16. Due to the organic nature of the sample, finding larger areas with sufficient pixels to pull viable statistics from proved impossible, hence the lack of errors for these measurements.

Table 5.3
Comparison of the experimentally determined Michelson contrast for each of the metallic logos on silicon and the predicted contrast using the model of MacLaren et. al. [19].

Table 5.4
FWHM values derived from Gaussian fits to vertical knife-edge scans for different beam temperatures. As a point of comparison, the approximate size of the quitting surface for each temperature (given a 200 bar stagnation pressure, and 10 micron nozzle diameter) as given by Miller [34] is included, as well as the terminal speed ratio.

Table 5.5
FWHM values derived from Gaussian fits to horizontal knife-edge scans for different skimmer orifices. For the experiments in question, system employed a 200 bar beam, room temperature stagnation volume, a nozzle-to-skimmer separation of 15 mm. and the modified 5 micron pinhole plate. Resolution estimate based on the Dawes limit as previous detailed.

CHAPTER 4

Table 7.1
...

CHAPTER 5

Table 8.1
...

CHAPTER 6

Table 9.1
...

LIST OF ABBREVIATIONS

- AFM – Atomic Force Microscopy
- DWF – Debye-Waller Factor
- EI – Electron Ionisation
- e-p – electron-phonon
- ESF – Edge Spread Function
- FI – Field Ionisation
- FWHM – Full Width Half Maximum
- FIM – Field Ion Microscope
- HAS – Helium Atom Scattering
- LSF – Line Spread Function
- NAM – Neutral Atom Microscope
- NEMI – Neutral Microscopy
- PSF – Point Spread Function
- RGA – Residual Gas Analyser
- RMS – Root Mean Square
- SEM – Scanning Electron Microscopy
- SHeM – Scanning Helium Microscope
- STM – Scanning-Tunnelling Microscope
- STXM – Scanning Transmission X-ray Microscopy
- TEM – Transmission Electron Microscopy
- WD – Working Distance