
Available from: http://dx.doi.org/10.1016/j.biocel.2017.05.003

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0

Accessed from: http://hdl.handle.net/1959.13/1353021
Role of iron in the pathogenesis of respiratory disease

Md Khadem Alia, Richard Y. Kima, Rafia Karima, Jemma R. Mayalla, Kristy L. Martina, Ali Shahandeha, Firouz Abbasianb, Malcolm R. Starkeya, Daniel Johnstonec, Elizabeth A. Milwarda, Philip M. Hansbroa,†, Jay C. Horvata,†,*

aSchool of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
bGlobal Centre for Environmental Remediation, Faculty of Science, the University of Newcastle, Callaghan, NSW 2308, Australia
cBosch Institute and Discipline of Physiology, The University of Sydney, Sydney NSW 2000, Australia
†Authors contributed equally to this manuscript

Running title: Iron, infection and lung disease

Keywords: Iron, infection, lung disease, host–pathogen interaction, immunity,

Abbreviations: ARDS: Acute respiratory distress syndrome; TRALI: Transfusion-related acute lung injury; IPF: Idiopathic pulmonary fibrosis; CF: Cystic fibrosis; COPD: Chronic obstructive pulmonary disease; PAP: Pulmonary alveolar proteinosis; BAL: Bronchoalveolar lavage; DCYTB: Duodenal cytochrome b; DMT1: Divalent metal transporter 1; FPN: Ferroportin; LF: Lactoferrin; LFR: Lactoferrin receptor; slc11al: solute carrier family 11 member 1; RBC: Red blood cells; TF: Transferrin; TFR: Transferrin receptor; IFN-γ: interferon-γ; TNF-α: tumor necrosis factor-α; TFBP: TF binding protein; non-small-cell: NSC; ferritin-bound iron: FBI; hypoxia inducible factor-1α: HIF-1α;

Corresponding author:
Dr Jay Horvat
School of Biomedical Sciences and Pharmacy
Faculty of Health and Medicine
The University of Newcastle
Callaghan NSW 2308 Australia
Tel: +61 2 4042 0220
Abstract

Iron is essential for many biological processes, however, too much or too little iron can result in a wide variety of pathological consequences, depending on the organ system, tissue or cell type affected. In order to reduce pathogenesis, iron levels are tightly controlled throughout the body by regulatory systems that control iron absorption, systemic transport and cellular uptake and storage. Altered iron levels and/or dysregulated homeostasis have been associated with several lung diseases, including chronic obstructive pulmonary disease, lung cancer, cystic fibrosis, idiopathic pulmonary fibrosis and asthma. However, the mechanisms that underpin these associations and whether iron plays a key role in the pathogenesis of lung disease are yet to be fully elucidated. Furthermore, in order to survive and replicate, pathogenic micro-organisms have evolved strategies to source host iron, including freeing iron from cells and proteins that store and transport iron. To counter these microbial strategies, mammals have evolved immune-mediated defence mechanisms that reduce iron availability to pathogens. This interplay between iron, infection and immunity has important ramifications for the pathogenesis and management of human respiratory infections and diseases. An increased understanding of the role that iron plays in the pathogenesis of lung disease and respiratory infections may help inform novel therapeutic strategies. Here we review the clinical and experimental evidence that highlights the potential importance of iron in respiratory diseases and infections.
1. Introduction

Iron is a key nutritional trace element that plays a role in many different biological processes, including DNA and RNA synthesis, oxygen transport, cellular respiration, the activity of numerous enzymes, immune function and metabolism (Beard, 2001; Rouault and Tong, 2008). Too little iron can have deleterious consequences that result from deficits in key biological processes. However, too much iron can also have harmful effects, in particular through the generation of reactive oxygen species (ROS), which induce oxidative stress, lipid peroxidation, and DNA damage. This results in genomic instability and DNA repair defects that affect cell viability and promote programmed cell death (Paul and Lill, 2015; Zhang, 2014).

In humans, 60-70% of iron is contained within haemoglobin in red blood cells (RBC) (Geissler and Singh, 2011). Since various organs, including bone marrow, spleen and liver, are involved in RBC production and clearance, these organs function as key compartments for iron storage and recycling (Andrews and Schmidt, 2007; Ganz and Nemeth, 2006). A further 10% of body iron is found in muscle myoglobin and mitochondrial cytochromes are also rich sources (Geissler and Singh, 2011). Outside these sites, most iron in the body is stored intracellularly in ferritin, whilst most extracellular iron is associated with high-affinity, iron-binding proteins such as transferrin (TF) (Andrews and Schmidt, 2007).

Under healthy conditions, finely tuned iron regulatory mechanisms maintain systemic and cellular iron homeostasis and prevent toxicity by balancing the body’s iron demand through absorption, recycling of haem-iron from RBCs and storage and mobilization processes (Andrews and Schmidt, 2007; Meyron-Holtz et al., 2014; Philpott and Ryu, 2014) (Fig 1). These processes are tightly controlled and involve a number of iron-binding and -storing proteins, iron-sensing receptors and transporting factors and both intracellular and intercellular signalling molecules (Andrews and Schmidt, 2007; Cassat and Skaar, 2013; Meyron-Holtz et al., 2014; Nairz et al., 2014; Philpott and Ryu, 2014; Skaar, 2010; Soares and Weiss, 2015; Weinberg, 2009) (Fig 1).

Dysregulation of iron homeostasis has been associated with numerous diseases including haemochromatosis and anaemia as well as several cancers, and cardiovascular, neurodegenerative and respiratory diseases (Gozzelino and Arosio, 2016). Respiratory diseases account for up to 1 in 6 deaths globally and are a major socio-economic burden (Foster et al., 2013; Hansbro et al., 2013; Keely et al., 2012; Kim et al., 2015; WHO, 2011). There is strong evidence for dysregulated iron homeostasis in several major respiratory diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, idiopathic...
pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma and acute respiratory distress syndrome (ARDS). Respiratory infections are a leading cause of death worldwide and are a major contributor to the pathogenesis of lung disease (Foster et al., 2013; Hansbro et al., 2013; Keely et al., 2012; Kim et al., 2015; WHO, 2011). Humans have a range of host defences that protect against microbial invasion as well as limit the growth and replication of pathogens within the respiratory tract. These include epithelial and other barriers that prevent pathogen access to host tissues as well as innate and adaptive immune responses (Hallstrand et al., 2014). Since iron is also required for microbial biological processes, one of the key defence strategies in humans to protect against infection is the limitation of iron supply to pathogens (Cassat and Skaar, 2013; Nairz et al., 2014). Importantly, many clinically important respiratory pathogens have developed strategies that enable them to efficiently source iron from the host.

Here we describe how iron homeostasis is regulated in the human body, outline the current understanding of clinical and experimental evidence that supports a link between dysregulated iron and/or iron regulatory molecule responses and lung disease and highlight the importance of the interplay that exists between iron, infection and immunity in the context of respiratory infection.

2. Overview of iron homeostasis

Iron levels are tightly controlled in throughout the body. Iron in the diet is found in both non-haem and haem forms, with most of the non-haem iron present as ferric ions (Fe$^{3+}$) (Andrews and Schmidt, 2007; Ganz and Nemeth, 2006; Geissler and Singh, 2011). Whole-body iron content is maintained within a relatively narrow range through co-ordinated mechanisms that control iron uptake, storage, utilisation and excretion (Andrews and Schmidt, 2007; Hentze et al., 2004). During digestion, Fe$^{3+}$ is converted to Fe$^{2+}$ by membrane metalloreductase proteins or by other reducing agents, such as ascorbic acid, in the gastrointestinal tract. This enables transport of iron from the lumen into enterocytes through the divalent metal transporter (DMT)1 protein (Andrews and Schmidt, 2007; Lambe et al., 2009; McKie et al., 2001) (Fig 1). Following DMT1-mediated absorption, a proportion of iron is stored in enterocytes bound to ferritin, whilst some is released into the circulation by the iron export protein, ferroportin (FPN) (Andrews and Schmidt, 2007; Geissler and Singh, 2011; Wessling-Resnick, 2006). In the blood, iron generally binds to TF and is transported to different tissues where it is utilised for numerous iron-dependent functions (Andrews and Schmidt, 2007; Geissler and Singh, 2011). Iron that is loaded into TF (holo-TF) interacts with
transferrin receptor (TFR1) on the cell membrane, resulting in internalisation of the complex via endocytosis (Andrews and Schmidt, 2007; Hentze et al., 2004). Iron is then released from TF into the endosome following Na⁺-H⁺-ATPase-mediated endosome acidification before being released into the cytoplasm via DMT1 (Andrews and Schmidt, 2007; Gunshin et al., 1997; Hentze et al., 2004). TF and TFR1 are recycled back to the cell surface with TF released into the extracellular environment and TFR1 retained in the membrane. The iron released into the cytoplasm is either utilised, stored as ferritin or incorporated into various iron-containing molecules, including haemoglobin, myoglobin or cytochromes, depending on the cell type and requirement (MacKenzie et al., 2008; Philpott and Ryu, 2014). Ferritin functions as a major intracellular storage molecule for iron, limiting excessive free iron that could otherwise generate ROS (Philpott and Ryu, 2014; Zhang, 2014).

Intracellular iron levels are regulated by iron regulatory proteins (IRP)1 and 2, which can bind to iron-responsive elements (IRE) present in the 3' and 5' untranslated regions (UTR) of mRNA transcripts for iron homeostasis regulatory factors, including ferritin, FPN and TFR1, as well as factors not directly involved in iron regulation (Erlitzki et al., 2002; Kato et al., 2007). When intracellular iron concentrations are low, the binding activity of IRPs is high, which results in the stabilisation of transcripts containing an IRE in the 3' UTR (e.g. TFR1), and repression of translation of transcripts containing an IRE in the 5' UTR (e.g. ferritin) (Muckenthaler et al., 2008). The net effect is increased TFR1 and decreased ferritin expression, supporting the restoration of intracellular iron to healthy physiological levels. Conversely, when labile intracellular iron concentrations are high, the binding of IRPs to IREs is decreased, resulting in reductions in TFR1 and increased ferritin (Muckenthaler et al., 2008).

Once iron is absorbed, there are no specific active physiological mechanisms that exist to excrete iron from the body, although small amounts of iron are lost in urine, sweat and shedding of epithelial cells. Instead the maintenance of iron levels is controlled by homeostatic mechanisms that regulate absorption, storage and re-utilisation rather than through active excretion (Anderson, 2007; Geissler and Singh, 2011).

2.1. Key role of hepcidin in iron homeostasis

Hepcidin is a cysteine-rich 25 amino acid cationic peptide predominantly expressed in the liver that plays a crucial role in iron homeostasis (Andrews and Schmidt, 2007; Krause et al., 2000; Nicolas et al., 2002a) (Fig 1). Hepcidin regulates intra- and extracellular iron levels by reducing the efflux of iron from hepatocytes and tissue macrophages, which are the cells
responsible for the storage of iron, as well as by decreasing the rate of iron transport from enterocytes into the bloodstream, which effectively reduces dietary iron absorption (Andrews and Schmidt, 2007). Hepcidin accomplishes this by binding to the cellular transmembrane iron exporter, FPN leading to its endocytosis and proteolysis in hepatocytes, macrophages and enterocytes, which results in decreased FPN-mediated iron transport into extracellular fluids and increased cellular iron retention (Nemeth et al., 2004).

Hepcidin expression is increased by high iron levels and inflammation (Nicolas et al., 2002b; Pigeon et al., 2001), and decreased by iron deficiency, ineffective erythropoiesis and hypoxia (Nicolas et al., 2002b; Weinstein et al., 2002). Increased iron levels in the plasma increase hepcidin expression through a number of pathways, which in turn reduces iron absorption through the gut and iron release from cells into the circulation (Knutson et al., 2005; Laftah et al., 2004; Lin et al., 2007; Pigeon et al., 2001; Rivera et al., 2005; Yamaji et al., 2004) (Fig 1). Under normal physiological conditions, hepcidin expression is regulated in response to iron through the bone morphogenetic protein (BMP)/SMAD pathway and the haemochromatosis protein (HFE)/TFR1/TFR2 signalling pathway. Elevated liver iron increases the expression of BMPs, notably BMP6, which bind to type I and II cell BMP receptors and the BMP co-receptor, haemojuvelin (HJV), on the cell surface (Core et al., 2014; Pantopoulos et al., 2012; Parrow and Fleming, 2014). This results in the phosphorylation of SMADs 1, 5 and 8, and subsequent interaction with SMAD4 (Core et al., 2014; Pantopoulos et al., 2012; Parrow and Fleming, 2014). The SMAD complex is then transported into the cell nucleus where it binds to BMP-responsive elements (BMPRE) within the hepcidin promoter, resulting in the increased expression of hepcidin (Core et al., 2014; Pantopoulos et al., 2012; Parrow and Fleming, 2014). The BMP signalling pathway is also adjusted by two sensors of holo-TF (i.e. iron-saturated TF), TFR1 and 2, and their binding partner, the MHC class I-like transmembrane protein, HFE. Increasing concentrations of holo-TF alters the interaction of HFE from TFR1 to TFR2, which stimulates the stabilisation of the TFR2 protein (Schmidt et al., 2008). TF:TFR2 binding is proposed to promote hepcidin expression through the modification of BMP/SMAD and ERK/MAPK signalling pathways (Casanovas et al., 2009). Defects in HFE and TFR2 lead to decreased hepcidin expression, which results in excessive iron loading, whilst restoration of HFE and TFR2 expression in HFE deficient and TFR2 mutant mice restores hepcidin expression and reverses excessive iron loading (Fleming et al., 2002; Gao et al., 2010; Levy et al., 1999; Schmidt et al., 2008; Zhou et al., 1998). Defects in the HFE and/or TFR2 genes are responsible for the pathogenesis of excessive iron loading in most patients with hereditary haemochromatosis,
with mutations in HFE being most commonly associated with the disease and TFR2 mutations rare (Bridle et al., 2003; Gehrke et al., 2003; Powell et al., 2016).

3. Inter-relationship between iron, infection and immunity

3.1 Iron and infection

Iron is essential for the optimal growth and replication of the majority of microorganisms, including human pathogens (Cassat and Skaar, 2013; Parrow et al., 2013; Payne, 1993). Invading bacterial pathogens use a variety of strategies to source iron from host tissues. Whether the pathogens are extracellular or intracellular microbes affects the strategies they use to source iron. In addition, microbial iron acquisition strategies depend on the different forms of iron that the microbes target, such as labile iron or iron associated with haem or TF. Iron sourcing mechanisms include haem acquisition systems, production of siderophores and, utilisation of ferric or ferrous iron transporters or TF or lactoferrin (LF) binding proteins (Cassat and Skaar, 2013; Parrow et al., 2013).

Clinical observations have shown that excess iron in haemochromatosis patients increases susceptibility to various pathogens, including *Escherichia coli*, *Vibrio vulnificus*, *Vibrio cholera*, *Klebsiella* species, *Listeria monocytogenes*, *Shigella* species, Hepatitis B and C, cytomegalovirus, parvovirus, and HIV (Bullen et al., 1991; Cappellini MD, 2008; Christopher, 1985; Fernandez et al., 2000; Hopfner et al., 2001; Khan et al., 2007; Parrow et al., 2013; Wanachiwanawin, 2000). A study of 1,455 haemodialysis patients showed a significant increase of bacteraemia incidence in those with high serum ferritin levels (Kessler et al., 1993). Another study of 607 haemodialysis patients also revealed that high serum ferritin is an independent risk factor for bacterial infection in these patients (Hoen et al., 1995). *Salmonella* infections have been found to be increased in patients with haemolytic disorders such as malaria and sickle cell disease (Jurado, 1997). Moreover, patients with beta-thalassaemia, a disease that often requires repeated blood transfusions that result in iron overloading, are susceptible to infection with normally avirulent pathogens, such as *Yersinia enterocolitica* (Green, 1992; Wanachiwanawin, 2000).

3.2 Innate immune responses limit iron availability during infection

Since iron is essential for both humans and clinically important pathogens, the outcome of competition between host defensive iron sequestration strategies and counter-strategies of pathogens for sourcing iron plays an important role in determining the fate of an infection (Soares and Weiss, 2015; Sutak et al., 2008; Traore and Meyer, 2007).
One of the key defence strategies that protects against infection by extracellular microbes is the limitation of labile iron to extremely low levels in extracellular fluids in the body. Most iron is stored intracellularly in complexes with proteins such as haem and ferritin, whilst extracellular iron is strongly bound to TF. However, TF-bound iron is also a potential source of iron for extracellular microbes (Hunter et al., 1984; Schryvers and Morris, 1988; Vogel et al., 1997a). Apart from TF, a series of iron-binding proteins, including LF, sequester iron. LF is a powerful iron chelator found in various mucosal secretions that limits iron availability to pathogens (Baveye et al., 1999). LF is released by epithelial cells as well as by neutrophils that have infiltrated to infection sites (Ward et al., 2002). Importantly, studies show that administration of LF to mice infected with bacteria bacterial growth (Drago-Serrano et al., 2010; Hwang et al., 2014; Velliyagounder et al., 2015; Zagulski T, 1989). These findings suggest that LF may protect against infection by limiting iron availability, although, LF also has other immunomodulatory and antimicrobial activities that may contribute to its protective effects (Actor et al., 2009; Drago-Serrano et al., 2010; Fischer et al., 2006; Hwang et al., 2014; Ward et al., 2002). In addition to LF, lipocalin (LCN)2 (also known as neutrophil gelatinase-associated LCN [NGAL] and siderocalin) is released from neutrophils and epithelial cells in response to infection and inflammatory stimuli. LCN2 binds pathogen-specific salicylate- and catecholate-type iron sourcing molecules, which hinders the ability of pathogens that utilise these types of siderophores to source iron (Chan et al., 2009; Cowland et al., 2003; Flo et al., 2004; Goetz et al., 2002; Holmes et al., 2005). Like LF, LCN2 also appears to have immunomodulatory effects.

As discussed previously, hepcidin regulates iron levels by inhibiting FPN-mediated iron efflux from cells. Importantly, hepcidin plays a key role in innate immune-mediated iron limitation (Kemna et al., 2005). During infection and inflammatory responses, hepcidin production is up-regulated through activation of STAT3 signalling by IL-6 (Wrighting and Andrews, 2006). Other cytokines, such as IL-1α, IL-1β and IL-22, also stimulate intracellular cytokine signalling pathways that increase hepcidin expression (Armitage et al., 2011; Lee et al., 2005; Smith et al., 2013a). Macrophages and neutrophils produce hepcidin, regulating iron bioavailability at the site of infection (Peyssonnaux et al., 2006). Hepcidin also affects FPN in an autocrine fashion to regulate intracellular iron content in monocytes during inflammatory responses (Theurl et al., 2008). This coordinated program depletes extracellular iron to limit its availability to pathogens. Interestingly, FPN expression can also be down-regulated in monocytes by inflammatory cytokines through hepcidin-independent mechanisms (Ludwiczek et al., 2003).
Immune responses limit iron availability to intracellular pathogens by altering the transcript expression and/or translation of iron-regulatory molecules, including ferritin, TFR1, FPN solute carrier family 11 member 1 (slc11a1, formerly NRAMP1), DMT1, haem oxygenase (HOX)1 and LCN2, in infected monocytes and macrophages (Byrd and Horwitz, 1993; Johnson et al., 2010; Nairz et al., 2008; Nairz et al., 2007; Olakanmi et al., 2002). For example, studies show that IFN-γ decreases the expression of ferritin and TFR1 in human monocytes (Byrd and Horwitz, 1993). IFN-γ can also cause decrease iron uptake through TFR1, and increase iron export by FPN in infected murine macrophages (Nairz et al., 2008; Nairz et al., 2007). This reduction in TFR1 expression and increase in FPN limits the cell’s ability to engulf holo-TF and increases iron efflux, reducing intracellular iron availability to the pathogen and inhibiting its replication. The transporter slc11a1/NRAMP1 is an integral membrane protein found in the endosomes of macrophages that is responsible for exporting iron and other divalent metals (Mn²⁺, Zn²⁺) out of the infected endosome, limiting iron bioavailability. It has been shown to play an important role in protecting against several species of intracellular pathogens (Caron et al., 2002; Gruenheid et al., 1997; Jabado et al., 2000; Vidal et al., 1995a; Vidal et al., 1995b; Zwilling et al., 1999). Interestingly, this may occur through the restriction of the expression of IL-10 and increased expression of inducible nitric oxide synthase (iNOS) by macrophages, which dramatically enhances the ability of macrophages to restrict microbial growth (Fritsche et al., 2008).

4. Regulation of iron levels in the lung

Iron-regulatory molecules, including ferritin, TF, LF, TFR1 and 2, LFR, FPN, DMT1, hepcidin, slc11a1/NRAMP1, LCN2 and duodenal cytochrome c (DCYTB) are produced by different cell types within the lung, including epithelial cells and macrophages (Basaraba et al., 2008; Cowland et al., 2003; Frazier et al., 2011; Ghio et al., 1999; Ghio et al., 1998; Ghio et al., 2006; Giorgi et al., 2015; Nguyen et al., 2006; Upton et al., 2003; Wang et al., 2002; Wesselius et al., 1994; Wu et al., 2011; Yang et al., 2002) (Fig 2). As in other tissues, there is evidence to support roles for these iron-regulatory molecules in the lung in regulating the transport of iron between the blood and tissue, maintaining intracellular and extracellular iron levels required for biological function and ensuring that iron is stored in a manner that protects the lungs from iron-induced oxidative stress and infection (Basaraba et al., 2008; Cowland et al., 2003; Frazier et al., 2011; Ghio et al., 1999; Ghio et al., 1998; Ghio et al., 2006; Giorgi et al., 2015; Nguyen et al., 2006; Upton et al., 2003; Wang et al., 2002; Wesselius et al., 1994; Wu et al., 2011; Yang et al., 2002).
Import of non-TF-bound iron into lung epithelial cells is mediated by DMT1 and DCYTB (Ghio et al., 2006; Giorgi et al., 2015). Decreased systemic iron as a result of repeated bleeding in a mouse model of iron deficiency has been shown to have no effect on lung iron levels but increases DMT1, HFE and TFR1 expression in the lung as well as localisation of DMT1, HFE and FPN to apical surface of airways epithelial cells (Giorgi et al., 2015). In contrast, increased systemic iron levels as a result of intraperitoneal iron saccharate injections, has been shown to increase lung iron levels which corresponds with an increase in FPN expression in the lung (Giorgi et al., 2015). Interestingly, increased lung iron associated with increased systemic iron also resulted in increased localisation of DMT1 to the apical surface of airway epithelial cells, which supports an important role for DMT1 airway epithelial cell surface expression in maintaining lung iron homeostasis (Giorgi et al., 2015).

In the lung, iron is stored intracellularly in ferritin, limiting its ability to form free radicals. It has been shown that elevated production of ferritin in lung epithelial cells and macrophages occurs rapidly following iron exposure (Ghio et al., 1998). Furthermore, increased iron levels in the lung following systemic iron loading, results in the localisation of ferritin near to the apical surface of airways epithelial cells and increased iron accumulation in macrophages (Giorgi et al., 2015).

Macrophages play a principal role in maintaining iron homeostasis through the sequestration of haem-iron from senescent RBCs for storage and recycling, the uptake and storage of TF-bound iron and, in the lung, the clearance of inhaled iron-containing particulate matter (Gammella et al., 2014; Ganz, 2012) (Fig 1 & 2). As such, the handling and storage by macrophages of relatively large amounts of iron from different sources plays an important role in protecting the lung from iron-induced oxidative stress and sequestering iron from potential invading pathogens (Corhay et al., 1992; Fritsche et al., 2007; Mulero et al., 2002; Nairz et al., 2009; Soe-Lin et al., 2009; Turi et al., 2004; Zwilling et al., 1999) (Fig 1 & 2). Neutrophils have also been shown to be involved in iron homeostasis by releasing several iron regulatory molecules, including LF and LCN2, which also help sequester free iron and protect the lung (Ghio et al., 2006) (Fig 2).

5. Altered iron levels and iron regulatory molecule responses in lung disease
5.1 Cigarette smoking, COPD/emphysema and lung cancer

Cigarette smoke contains iron particulates and toxic substances that can induce intracellular iron accumulation and alter iron homeostasis in the lung and systemically (Ghio et al., 2008a). Iron and ferritin levels are increased in the lungs of smokers and macrophages
in the lower respiratory tract have increased iron loading following smoke exposure (Nelson et al., 1996; Thompson et al., 1991). Furthermore, cigarette smoke increases iron accumulation in the airways, which results in elevated oxidative stress and release of IL-8 (Ghio et al., 2008a) and excess iron in the alveoli has been shown to contribute to increased alveolar macrophage-derived IL-1β production (O'Brien-Ladner et al., 2000), suggesting a potential relationship between iron accumulation and inflammation in the progression of cigarette smoking-associated diseases.

COPD is a complex progressive condition characterized by chronic airway inflammation that is associated with airway remodelling, alveolar destruction (i.e. emphysema) and persistent airflow obstruction and is predicted to be the 3rd leading cause of death world-wide by 2030 (Beckett et al., 2013; Budden et al., 2016; Fricker et al., 2014; Lozano et al., 2012; Rabe et al., 2007). Whilst environmental factors including fossil fuel smoke exposure and diet and certain genetic risk factors have been shown to increase susceptibility to disease, cigarette smoking is the single greatest risk factor for developing COPD (Beckett et al., 2013; Chappell et al., 2011; Fricker et al., 2014; Hanson et al., 2014; Huang et al., 2013; WHO, March 2015). Altered macrophage iron sequestration and levels of iron-binding proteins including TF, ferritin, haptoglobin and LCN2 as well as hepcidin have been detected in both respiratory fluids and serum of patients with COPD and emphysema (Eagan et al., 2010; Engstrom et al., 2009; Nelson et al., 1996; Philippot et al., 2014; Tandara et al., 2015). Significantly, alveolar macrophages have been shown to have increased iron loading in COPD with the quantity of iron deposits and percentage of iron-positive macrophages associated with disease severity (Philippot et al., 2014). Genome-wide association studies have shown relationships between COPD susceptibility and some single-nucleotide polymorphisms (SNPs) in several genes associated with iron regulation (Chappell et al., 2011; Pillai et al., 2009). Notably, IRP2 has a strong association with susceptibility to COPD (Chappell et al., 2011; DeMeo et al., 2009). The expression of IRP2 has been shown to be significantly increased in the lung tissues of COPD patients compared to controls, with an increased trend of upper lobe emphysema shown to be associated with five IRP2 SNPs (Chappell et al., 2011; DeMeo et al., 2009). Interestingly, the effects of IRP2 SNPs on COPD may be independent of smoking (Zhou et al., 2012). IRP2 was also found to be significantly associated with emphysema in males with α1-antitrypsin deficiency, which is associated with a strong increase in susceptibility to COPD independent of smoke exposure (Kim et al., 2012). Significantly, an elegant study recently published by Cloonan et al., provides valuable
mechanistic insights into the relationship between smoking, dysregulated iron homeostasis and oxidative stress-induced mitochondrial dysfunction in COPD pathogenesis (Cloonan et al., 2016). The authors show that IRP2 is an important COPD susceptibility gene, that IRP2 responses are abnormally increased in patients with COPD and that IRP2 deficient mice are protected against the effects of chronic cigarette smoke exposure (Cloonan et al., 2016; DeMeo et al., 2009). The authors then went on to demonstrate that increased IRP2 results in increased iron accumulation in the mitochondria and that this leads to cytochrome c oxidase-dependent mitochondrial dysfunction that is responsible for the pathogenesis of key features of disease. Furthermore, they showed that mice administered with a mitochondrial iron chelator or fed a low-iron diet were protected (Cloonan et al., 2016). These findings highlight the importance of dysregulated iron homeostasis in the pathogenesis of COPD and also demonstrate the potential for iron-targeted therapeutic strategies for the management/treatment of disease.

Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide. Approximately 80-90% of lung cancer is associated with cigarette smoking (Alberg et al., 2007; Thun et al., 2008; WHO, 2014). Increased levels of ferritin have been found in the serum, bronchoalveolar lavage (BAL) and exhaled breath condensate of patients with lung cancer (Aleman et al., 2002; Fracchia et al., 1999; Shi et al., 2014). In patients with non-small-cell lung cancer (NSCLC), the increase in serum ferritin is attributed to inflammation and oxidative stress, rather than changes in body iron (Kukulj et al., 2010). Serum ferritin concentration is also closely associated with the prognosis and survival of patients with primary lung cancer (Milman N, 2002). Increased expression of TFR1 has been observed in 88% of tumours in patients with NSCLC (Kukulj et al., 2010), suggesting that lung cancer cells may increase iron uptake through increased TF:TFR1 interactions. A recent study has shown that epidermal growth factor receptor (EGFR) modulates cellular iron homeostasis through promoting increased cellular surface expression of TFR1 and that this is essential for cancer development and progression (Wang B, 2016). Interestingly, increased TF production has been reported in SCLC cells and is important for promoting cellular proliferation in an autocrine manner (Vostrejs et al., 1988). In other studies overexpression of LNC2 has been associated with radio-resistance of lung cancer cells and predicts worse survival of lung cancer patients (Ruiz-Morales et al., 2015; Shiiba et al., 2013). It has been reported that microRNAs (miRNAs) regulate the expression of several genes involved in iron homeostasis and that these miRNAs may play a role in the pathogenesis of lung cancer (Castoldi and Muckenthaler, 2012). The expression of FPN is downregulated by the binding
of miRNA (miR)-20a to highly conserved target sites in its 3′ UTR. In individuals with pulmonary adenocarcinoma and squamous cell carcinoma a significant inverse correlation is observed between miR-20a levels and FPN expression (Babu and Muckenthaler, 2016). Furthermore, FPN is negatively regulated by miR-20a in NSCLC cells, with the manipulation of miR-20a or FPN capable of affecting colony formation and cellular proliferation. Ziółkowska-Suchanek et al., have shown that IRP2 variants are associated with increased risk of lung cancer (Ziolkowska-Suchanek et al., 2015). In addition, IRP2 has been shown to promote pro-oncogenic properties in human lung cancer cells (Maffettone et al., 2010). Together, these findings suggest a role for dysregulated iron regulation and/or accumulation in cells in the pathogenesis of lung cancer and further highlight the therapeutic potential for targeting iron regulation in the treatment of lung disease. Additionally, humans and mice with COPD have altered microbiomes and increased susceptibility to respiratory infections that exacerbate their disease (Beckett et al., 2013; Budden et al., 2016; Chambers et al., 2014; Hsu et al., 2016; Hsu et al., 2012; Hsu et al., 2015; Jones et al., 2016; King et al., 2015; Simpson et al., 2016; Simpson et al., 2014; Singanayagam et al., 2015; Starkey et al., 2013b; Tay et al., 2015), and increases in iron may be involved in these process.

5.3 Cystic fibrosis

CF is a fatal genetic lung disease caused by dysfunction of the anion transporter CF transmembrane conductance regulator (CFTR), resulting in reduced airway surface liquid and increased production of abnormally thick, viscous mucus in the CF lung (Boucher, 2007; O'Sullivan and Freedman, 2009). It also affects other organs including liver, pancreas, kidneys and intestine (O'Sullivan and Freedman, 2009). Along with a number of other symptoms, breathing difficulties, as a result of the accumulation of thick mucus in the airways, and frequent and chronic lung infections are major characteristic features of CF (O'Sullivan and Freedman, 2009). Abnormal iron homeostasis, including, systemic iron deficiency as well as dysregulation of intracellular molecular pathways associated with increased iron accumulation and defective iron sequestration in the airway cells have been found in experimental models of CF and human CF patients (Chillappagari et al., 2014; Reid et al., 2002; Uijterschout et al., 2014). Altered iron homeostasis in the lower respiratory tract has also been associated with CF and severity of disease, with elevated levels of iron present in the (BAL), sputum and alveolar and interstitial macrophages from CF patients compared to healthy controls and increased iron levels correlating with declining lung function (Ghio et al., 2013; Reid et al., 2004; Reid et al., 2002; Stites et al., 1999). Furthermore, the increased
iron levels observed in the airways of CF patients may contribute to the increased susceptibility to the chronic bacterial infections that are associated with CF.

5.4 IPF

IPF is a chronic and fatal progressive lung disease characterised by persistent and progressive damage of alveoli and lung fibrosis, associated with an advanced decline in lung function that renders the lungs incapable of effectively facilitating oxygen transport into the bloodstream (Raghu et al., 2011). Whilst the exact causes of IPF are unclear, smoking and other environmental factors, such as exposure of dust, silica and infections, have been suggested to play roles in its development (Olson and Swigris, 2012; Williams, 2014). Recent studies have shown that total iron levels, the generation of iron-associated oxygen radicals and iron-laden macrophages are elevated in the lungs of IPF patients compared to controls (Puxeddu et al., 2014; Sangiuolo et al., 2015). Furthermore, accumulation of excess iron has been shown to be associated with vascular abnormalities, including pulmonary arterial hypertension, in the lungs of IPF patients (Colombat et al., 2007; Kim et al., 2010). These findings suggest that disruption of iron homeostasis and iron overloading may play a role in the pathogenesis of IPF.

5.5 Asthma

Asthma is a common obstructive lung disease that affects approximately 10% of the population in developed nations (Hansbro et al., 2008; Hansbro et al., 2004; Hansbro et al., 2011; Hansbro et al., 2014; Wang et al., 2010; Yang et al., 2012). It is underpinned by aberrant responses to otherwise harmless environmental stimuli that drive chronic inflammation, smooth muscle contraction and mucus hypersecretion in the airways that result in airways narrowing and the widespread but variable airflow obstruction that gives rise to the breathing difficulties associated with disease (Hansbro et al., 2008; Hansbro et al., 2004; Hansbro et al., 2011; Hansbro et al., 2014; Wang et al., 2010; Yang et al., 2012).

A relatively small number of clinical and experimental studies have reported evidence for altered systemic and lung levels of iron and iron regulatory molecules being associated with asthma. Clinically, lower iron levels have been reported to be associated with asthma in children and adults (Brigham et al., 2015; Ramakrishnan and Borade, 2010; Vlasic et al., 2009). However, it is not clear as to whether decreased iron levels play a role in the pathogenesis of asthma or are a consequence of disease given that chronic inflammatory responses are associated with decreased iron levels. Short-term intraperitoneal injections of
iron have been demonstrated to inhibit disease in an acute mouse model of asthma (Maazi et al., 2011), suggesting that increasing iron levels may be protect against disease, however, the potential pathological effects of longer-term injections of high concentrations of iron in the lung remain to be examined. Further studies investigating the effects of long term iron overloading with genetic and/or dietary models are required in order to appropriately address the long term consequences of iron loading on the asthmatic lung. Ferritin levels have been reported to be increased in the lung in an ovalbumin-induced mouse model of asthma (Bibi et al., 2014). Significantly, the levels of ferritin and ferritin-bound iron were shown to be decreased in this model by intranasal treatment with iron chelator complexes, with treatment resulting in an attenuation of asthma-associated inflammatory responses (Bibi et al., 2014). In another study, the administration of LF reduced inflammation in a ragweed-induced model of asthma (Kruzel et al., 2006), however, how the model affected iron levels in the lung and the effects that LF treatment had on these responses, were not explored in this study.

Whilst more studies investigating the link between iron levels and asthma are clearly required, these findings provide evidence that asthma is associated with altered iron homeostasis and suggest that correcting abnormal iron levels or iron regulatory molecule expression may be effective for the treatment of disease. It is also worth noting that the associations between iron levels and asthma may vary between different phenotypes of asthma and during exacerbations of disease (Hansbro et al., 2011). Considering that infections are associated with the development of asthma phenotype (Beckett et al., 2012; Hansbro et al., 2008; Hansbro et al., 2004; Horvat et al., 2007; Horvat et al., 2010b; Starkey et al., 2013a; Starkey et al., 2012; Starkey et al., 2016; Starkey et al., 2014) and that humans and mice with asthma or allergic airway disease have altered microbiomes (Arrieta et al., 2015; Marsland et al., 2015) and increased susceptibility to respiratory infections (Essilfie et al., 2015; Essilfie et al., 2012; Essilfie et al., 2011; Horvat et al., 2010a; Kim et al., 2016; Kim et al., 2015; Wood et al., 2010; Yang et al., 2012) that increase the severity or exacerbate their disease (Starkey et al., 2013b), alterations in iron homeostasis may be involved in these processes.

5.6 Other lung diseases

ARDS is a severe lung illness that leads to accumulation of fluid in the alveoli, which inhibits oxygen transfer to the blood. ARDS can result from trauma, inhalation of noxious particles, pneumonia and lung transplantation. It has been proposed that ARDS is associated with increased levels of iron, TF, TFR, LF and ferritin in BAL, increased serum ferritin BAL
levels and polymorphisms in iron regulatory genes (Ghio et al., 2003; Lagan et al., 2008; Sharkey et al., 1999).

Transfusion-related acute lung injury (TRALI) is a serious life-threatening complication and is the leading cause of blood transfusion-related morbidity and mortality (Peters et al., 2015). TRALI is induced by transfusion of blood products, which is known to elevate systemic iron levels in patients, resulting in oxidative stress and a number of pathological consequences (Collard, 2014; Dani et al., 2004; Gattermann and Rachmilewitz, 2011; Jenkins et al., 2007; Peters et al., 2015). Increased iron accumulation is also observed following lung transplantation, with higher levels of iron accumulation associated with increased risk of acute organ rejection (Baz et al., 1997; Reid et al., 2001; Sandmeier et al., 2005).

Pulmonary alveolar proteinosis (PAP) is characterised by abnormal accumulation of protein-rich surfactant and inflammation, with unusual accumulation in the lung of alveolar macrophages containing intracellular surfactant-like material and is associated with impaired lung function (Rosen et al., 1958; Shimizu et al., 2011). The BAL fluid of patients with primary or idiopathic PAP display elevated levels of iron, TF, TFR1, LF and ferritin and a reduction in the concentration of antioxidants such as glutathione, which may lead to an increase in iron-catalysed oxidative damage (Ghio et al., 2008b).

Whilst these studies suggest that altered iron accumulation and/or a disruption in iron homeostasis may be associated with a number of lung diseases, the nature of the interplay between dysregulated iron and the progression of disease remains to be elucidated in most cases. If iron levels in tissues saturate protective mechanisms, production of reactive oxygen species and induction of oxidative stress may arise. Therefore, increased accumulation of iron in the lung may contribute to a number of lung diseases by promoting oxidative stress, which can result in tissue damage, inflammation and altered lung structure and function and/or mitochondrial dysfunction (Fig 3). Furthermore, disruptions to iron availability may affect key biological processes important in maintaining normal cell function (Fig 3). It is also possible that altered iron levels may be a consequence of tissue damage, for example by releasing iron from storage reservoirs such as macrophages, or disruption of iron-regulatory mechanisms by disease processes (Fig 3). Further studies are required to investigate the mechanistic roles that dysregulated iron levels may play in the development of lung disease. The elucidation of such mechanisms may highlight novel therapeutic strategies that are based on correcting iron homeostasis in lung diseases, particularly those associated with evidence of dysregulated iron homeostasis.
6. Iron and the pathogenesis of respiratory infections

Iron and iron-regulatory proteins play an important role in the pathogenesis of a number of clinically significant respiratory infections, including, but not limited to, *Haemophilus influenzae*, *Streptococcus pneumoniae*, *Mycobacterium tuberculosis* and *Pseudomonas aeruginosa*. Importantly, the relationships that exist between iron and respiratory infection may have important ramifications for the pathogenesis and treatment of a number of infection-associated lung diseases.

H. influenzae is a Gram negative respiratory tract pathogen that is associated with a number of clinically significant lung diseases, including asthma (particularly non-eosinophilic, steroid refractory forms of disease), COPD, CF and chronic bronchitis (Cardines et al., 2012; Essilfie et al., 2012; Kim et al., 2016; Simpson et al., 2016; Wood et al., 2010; Yi et al., 1997). *H. influenzae* expresses the siderophore, human TF-binding protein, which binds human TF and allows the bacterium to sequester iron required for growth (Schryvers and Gray-Owen, 1992; Vogel et al., 1997a). In addition to TF, *H. influenzae* can also source iron through the uptake of host proteins such as LF, ferritin and haemoglobin (Pidcock et al., 1988; Vogel et al., 1997a). Significantly, studies have shown that TF levels are increased in the sputum of patients with chronic bronchitis associated with *H. influenzae* infections (Vogel et al., 1997b). However, whether the increased TF levels are the consequence of chronic bronchitis or are the cause of chronic infection and, therefore, the driver of disease, remains to be elucidated. Vaccination with recombinant TF binding proteins, which induce antibody responses that block *H. influenzae* surface expressed TF binding proteins and ability to sequester TF, has been shown to be effective for protecting against non-typeable *H. influenzae* (Webb and Cripps, 1999). This suggests that therapies that target TF binding or other bacterial means for sourcing iron may be effective for the treatment of *H. influenzae* infections associated with chronic respiratory disease.

The Gram-positive respiratory pathogen, *S. pneumoniae* is responsible for a number of respiratory tract diseases including pneumonia and otitis media, as well as septicaemia and meningitis (Mitchell, 2000). Iron has been shown to be an important factor required for *S. pneumoniae* growth and replication, both *in vitro* and *in vivo* (Brown et al., 2001a; Brown et al., 2002; Brown et al., 2001b). To sequester iron, *S. pneumoniae* can utilize several iron sources such as hemoglobin, hemin, ferritin, ferric and ferrous iron salts, ferrioxamine and xenosiderophore (Brown et al., 2001a; Brown et al., 2001b; Ge and Sun, 2014; Gupta et al., 2009; Romero-Espejel et al., 2013; Tai et al., 1993). In addition to *S. pneumoniae*, iron has been shown to be critically important in the pathogenesis of pneumonia caused by *S. aureus*
(Mason and Skaar, 2009) and Klebsiella pneumoniae (Bachman et al., 2012). S. aureus acquires haem-iron via the haem transport and the iron-regulated surface determinant systems (Mazmanian et al., 2003; Muryoi et al., 2008; Skaar et al., 2004a; Skaar et al., 2004b). K. pneumoniae needs to secrete siderophores for bacterial replication and virulence (Bachman et al., 2015; Holden et al., 2016; Lawlor et al., 2007). It has been reported that K. pneumoniae siderophores chelate epithelial cell iron, promote cytokine secretion and activate the master transcription factor, hypoxia inducible factor-1α (HIF-1α), which regulates vascular permeability and inflammatory gene expression (Holden et al., 2014; Nelson et al., 2007). Indeed, siderophores secreted by K. pneumoniae have been suggested to act directly on the host to induce inflammatory cytokines and mediate bacterial dissemination, with HIF-1α a susceptibility factor for bacterial invasion during pneumonia (Holden et al., 2016; Holden et al., 2014). Furthermore, increased levels of iron-storing macrophages have been shown in the BAL fluid of patients with severe bacterial pneumonia (Grigoriu et al., 2006). Together, these findings suggest that targeting iron availability in the lung may be effective for the management of pneumonia caused by these bacteria.

M. tuberculosis is an intracellular bacterial pathogen that infects macrophages within the lung and is the major causative agent of tuberculosis. M. tuberculosis secretes siderophores that diffuse out of the phagosome/inclusion of infected macrophages in order to source cytoplasmic iron (Luo et al., 2005). M. tuberculosis can also decrease FPN cell surface expression in lung macrophages, which may enhances intracellular iron levels in order to facilitate replication (Van Zandt et al., 2008). Additionally, M. tuberculosis can source iron from exogenous TF, as it cycles through the TF/TFR1 endocytic pathway, through interactions between the M. tuberculosis phagosome and early endosomes (Clemens and Horwitz, 1996; Olakanmi et al., 2002). An elevated level of dietary iron has been shown to increase susceptibility to M. tuberculosis infections (Gangaidzo et al., 2001). Importantly, targeting iron availability and sequestration has been shown to be effective for reducing Mycobacteria infections (Schaible et al., 2002). Inhibition of TFR1 and TF uptake has been shown to inhibit the growth of M. tuberculosis as well as another intracellular pathogen, Legionella pneumophila (Byrd and Horwitz, 1989; Olakanmi et al., 2002). The growth and replication of M. tuberculosis within macrophages can also be inhibited by deleting the bacterial genes that code for siderophore production (De Voss et al., 2000), providing evidence that siderophore biosynthesis could be a potential target for new antimicrobial agents for pulmonary tuberculosis. Certainly, a mycobacterial-specific siderophore analog
conjugated with the antimalarial agent, artemisinin, has been shown to significantly inhibit *M. tuberculosis* replication *in vitro* (Miller et al., 2011).

P. aeruginosa, *H. influenzae* and *S. aureus* are the most commonly identified pathogens found in the lungs of CF patients and are major complicating factors that contribute to the pathogenesis of CF (Davies and Bilton, 2009; Konings et al., 2013; Lamont et al., 2009). *P. aeruginosa* has multiple active iron uptake systems, including haem transport systems (Minandri et al., 2016). Indeed, many *P. aeruginosa* genes are iron-responsive, and code for factors that help to produce siderophores that sequester iron from the host (Minandri et al., 2016; Vasil and Ochsner, 1999). Increased bioavailability of iron stimulates *P. aeruginosa* biofilm formation, aggregation, adhesion and invasion, allowing the pathogen to avoid host removal (Berlutti et al., 2005). Whilst iron deficiency is frequently observed in both adults and children with CF (Pond et al., 1996; Uijterschout et al., 2014), there is a significant increase in iron and ferritin in the sputum of CF patients, regardless of whether they are infected or not infected with *P. aeruginosa* (Stites et al., 1998). Indeed, free iron concentration in the mucosa and lower respiratory tract of healthy individuals is very low (10⁻¹⁸ M), whereas iron concentration in CF patient sputum is very high (6.3x10⁻⁵ M) (Berlutti et al., 2005). Significantly, in clinically stable CF patients, there is a strong positive correlation between sputum iron and *P. aeruginosa* levels (Reid et al., 2007). Together these findings have led to the suggestion that enhanced airway iron in CF patients is a potential causal factor of *P. aeruginosa* persistence in CF (Reid et al., 2007). These findings highlight the potential for correcting iron levels in the airways of CF patients as a potential therapeutic strategy for treating *P. aeruginosa* as well as *H. influenzae* and other infections that are commonly associated with the disease.

The human body has developed a number of strategies to restrict iron availability to pathogens and the lung is no exception. It has been demonstrated that LF blocks *P. aeruginosa* biofilm formation, provides protection against infection, and can reduce increased *M. tuberculosis* infectivity under iron overloading conditions (Schaible et al., 2002; Singh et al., 2002; Smith et al., 2013b). LF has also been shown to decrease the pathogenicity of a number of bacterial and viral lung infections (Grover et al., 1997; Pietrantoni et al., 2010; Welsh et al., 2011) and increase the efficacy of antimicrobial therapy for *P. aeruginosa*, with evidence suggesting that the effects of LF may be due to immunomodulation and/or the depletion of iron required for microbial replication (Frioni et al., 2014; Hwang et al., 2009; Marshall et al., 2016; Shin et al., 2005; Wakabayashi et al., 2014; Welsh et al., 2011). Interestingly, Britigan *et al.*, have shown that LF is cleaved in the lungs of *P. aeruginosa*-
infected CF patients (Britigan et al., 1993), which may provide another potential mechanism for increased susceptibility to infection in CF.

Iron regulatory molecule expression is also modified in the lung by infection-induced immune responses, helping to combat infection. Up-regulation of DMT1 in bronchial epithelial cells is stimulated by a number of pro-inflammatory cytokines, including TNF-\(\alpha\) and IFN-\(\gamma\), which are produced during infection (Wang et al., 2005). This suggests immune responses may increase DMT1 expression in the lung during an infection, facilitating the uptake of iron (Wang et al., 2005). As explained in Section 3, there is a strong link between hepcidin and immunity. It has been suggested that immune-mediated regulation of hepcidin occurs in the lung, with IFN-\(\gamma\) inducing the expression of hepcidin in airway epithelial cells but apparently without changing iron levels (Frazier et al., 2011).

Increased expression of slc11a1/NRAMP1 decreases iron levels in phagosomes and inhibits intraphagosomal microbial infection in macrophages (Forbes and Gros, 2001; Jabado et al., 2000). Allelic variants at the human Slc11a1 locus have been reported to be associated with susceptibility to \(M.\ \text{tuberculosis}\) and pulmonary \(M.\ \text{avium complex}\) infection and infection-induced disease (Archer et al., 2015; Gallant et al., 2007; Govoni and Gros, 1998; Sapkota et al., 2012; Tanaka et al., 2007; Zhang et al., 2005).

As explained in Section 3, LCN2 inhibits the growth of pathogens by interfering with siderophore-mediated iron sequestration (Chan et al., 2009; Cowland et al., 2003; Flo et al., 2004; Goetz et al., 2002; Holmes et al., 2005). LCN2 secreted by neutrophils and epithelial cells also appears to play an important role in the lung during infection (Bachman et al., 2012; Guglani et al., 2012; Martineau et al., 2007; Wu et al., 2010). LCN2 binds to siderophores produced by \(K.\ \text{pneumoniae}\), blocking iron uptake and mediating protection against invasive lung infection (Bachman et al., 2012). It also inhibits \(M.\ \text{tuberculosis}\) replication in an iron-dependent manner (Martineau et al., 2007). Furthermore, serum LCN2 levels have been shown to be inversely correlated with \(Mycobacteria\) infection in patients with active pulmonary tuberculosis (Martineau et al., 2007) and \(E.\ \text{coli}\)-induced pneumonia has been shown to be exacerbated in LCN2 deficient mice (Wu et al., 2010). Together these findings suggest that LCN2 limits iron acquisition by pathogens and may protect the lung from microbial infection.

Conclusions

It is clear that a number of acute and chronic lung diseases are associated with altered iron levels and/or iron homeostasis in the lung and that iron plays an important role in
pathogenesis of several clinically significant respiratory infections. Interestingly, since a number of chronic lung conditions such as COPD, IPF, CF and severe forms of asthma are associated with respiratory infections, dysregulated iron homeostasis and/or deficiencies in protective iron regulatory mechanisms may provide a critical link to explain the association between infection and the pathogenesis of a number of infection-associated lung diseases (Fig 3). Whatever the relationships, the studies outlined in this review highlight the need for further investigation into the precise nature of the interplay between iron, pathology, infection and immunity in the context of respiratory disease in order to inform the mechanisms involved and explore the potential for therapeutic strategies that target iron, iron-regulatory molecules or iron-associated effects.

Conflict of interest
Authors declare no conflict of interest.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. P.M.H. and J.C.H are supported by grants from the National Health and Medical Research Council (NHMRC) of Australia. P.M.H. is supported by a research fellowship from the NHMRC and a Gladys Brawn Fellowship, The University of Newcastle.

References

