A novel role for the TRAIL signalling pathway in the pathogenesis of Eosinophilic Oesophagitis

Leon Anthony Sokulsky

B Biomed Sci (Hons)

Thesis submitted in fulfilment of the requirements of obtaining the degree of

Doctor of Philosophy

School of Medicine and Public Health
The University of Newcastle

November 2016
Statement of Originality

I hereby certify that to the best of my knowledge that this thesis is my own written work and contains no material previously published or written by another person except where due references and acknowledgements are made. It contains no material that has been previously submitted by me for the award of any other degree or diploma in any university or other tertiary institution

Leon Sokulsky
Thesis by publication

I hereby certify that this thesis is in the form of three separate papers of which I am a joint author. I have included as part of the thesis a written statement from each co-author, endorsed in writing by the Faculty Assistant Dean (Research Training), attesting to my contribution to any jointly authored papers.
Acknowledgements

It goes without question that completing a doctorate of philosophy is a taxing and challenging experience. However, one of the best things about a PhD candidacy is that you rarely venture forth alone. The work I have presented here in this thesis would not have been possible if it weren’t for the support of the following people.

First, I would like to thank my supervisors for their essential role during my candidacy. I first met Professor Joerg Mattes during my undergrad degree in 2009 and have been a member of his lab since 2010. His extensive knowledge in paediatric medicine and his passion to discover new, novel therapies to treat debilitating diseases is inspirational and I have enjoyed my time working under his supervision. Additionally, I would like to acknowledge my co-supervisor Laureate Professor Paul Foster for his support, expertise and advice during my PhD. I would also like to thank my mentor, colleague and friend Dr Adam Collison for everything that he has done: I do not know how I could have completed my PhD without his guidance and knowledge. I would also like to thank the members of my lab (past and present), project collaborators and the animal bioresources facility staff for their assistance and support during my candidacy.

There is no doubt that my friends and family have been essential players during my candidacy. My two close friends, Jason Girkin and Young Lam, and I have
been an inseparable trio since undergrad and I am grateful for their friendship and support. I also had the pleasure of working alongside Jason during his PhD, which certainly made our candidacies the more enjoyable. I also wish to acknowledge my fellow researcher Bernadette Jones and her partner Colin Diamond, both of whom have been amazing pair of friends and have always been there for myself and my family. Speaking of family, it is imperative that I mention the support and encouragement provided by my mother and father, their partners Mario and Jen, my brother Dylan and his partner Robert, as well as my mother-, father- and sister-in-law.

Saving the best to last, I wish to acknowledge the most patient and loving person I know. My wife Yamma has been truly amazing to me during my PhD, putting up with me finishing late and working at unusual hours. I love you so much and I could not have finished my PhD without you. To my son George, who is currently playing with some papers as I write here in our office: I could not have asked for a better son than you. Born midway through my candidacy, it has been an adventure juggling you and my thesis: I would not have wanted it any other way. Love you George.
List of Publications

Leon A. Sokulsky, Jason LN. Girkin, Malcolm R. Starkey, Philip M. Hansbro, Paul S. Foster, Adam M. Collison and Joerg Mattes. *A unique role for IL-13 in Eosinophilic oesophagitis by inducing eosinophilia through MID-1 and STAT6.* Journal of Allergy and Clinical Immunology (Submitted under review) (2016).

*both authors contributed equally
List of Abbreviations:

AAD- Allergic Airways Disease

AHR- Airways Hyperreactivity

Asp F- Aspergillus Fumigatus

BAL- Bronchoalveolar Lavage

CCL11- C-C motif chemokine ligand 11 (Eotaxin-1)

CCL24- C-C motif chemokine ligand 24 (Eotaxin-2)

CCL26- C-C motif chemokine ligand 26 (Eotaxin-3)

DISC- Death Inducing Signalling Complex

EoE- Eosinophilic oesophagitis

FADD- Fas Associated Death Domain

GORD- Gastro-Oesophageal Reflux Disease

IgE- Immunoglobulin E

IKK- I Kappa B

IL- Interleukin

ILC2- Innate Lymphoid Cell Type 2

IL-13Ra- Interleukin IL Receptor α

MAPK- Mitogen-Activated Protein Kinase

MID-1- Midline-1
NFκB- Nuclear Factor Kappa B

OVA- Ovalbumin

PP2A- Protein Phosphatase 2A

PP2Ac- Protein Phosphatase 2A catalytic subunit

PPI- Proton Pump Inhibitor

PPI-REE- Proton Pump Inhibitor Responsive Eosinophilic Oesophagitis

RIP- Receptor Activating Protein

STAT- Signal Transducer and Activator of Transcription

TGF-β- Transforming Growth Factor-β

Th2- T helper 2

TRAIL- TNF-Related Apoptosis Inducing Ligand

TRAIL-/-- TRAIL Deficient

TRAIL-R- TRAIL Receptor

TSLP- Thymic Stromal Lymphopoietin

VCAM-1- Vascular Cellular Adhesion Molecule-1

VEGF-A- Vascular Endothelial Growth Factor-A
Table of Contents

A novel role for the TRAIL signalling pathway in the pathogenesis of Eosinophilic Oesophagitis..i

Statement of originality..ii

Thesis by publication...iii

Acknowledgements..iv

List of Publications..vi

List of Abbreviations..vii

Thesis Abstract..16

1. General Introduction..18

 1.1. Introduction into eosinophilic oesophagitis..18

 1.2. Pathogenesis and mechanisms involved in EoE..22

 1.3. Cytokines involved in the pathogenesis of EoE...24

 1.4. Oesophageal remodelling in EoE..27

 1.5. The TNF-α related apoptosis inducing ligand pathway..31

 1.6. TRAIL and the role in allergic inflammation..33

 1.7. EoE and the TRAIL signalling pathway..35

2. Research Chapter 1: TRAIL regulates MID-1, TSLP, inflammation and remodelling in experimental eosinophilic oesophagitis...37
2.1. Abstract .. 39

2.1.1. Background ... 39

2.1.2. Objective .. 39

2.1.3. Methods .. 39

2.1.4. Results .. 39

2.1.5. Conclusion ... 40

2.2. Introduction .. 41

2.3. Method .. 44

2.3.1. RNA sequencing of human biopsies ... 44

2.3.2. Mice .. 44

2.3.3. *Aspergillus Fumigatus* mouse model of EoE ... 44

2.3.4. Silencing (si)RNA medicated inhibition of MID-1 ... 45

2.3.5. Recombinant protein administration .. 45

2.3.6. Oesophageal circumference measurements ... 45

2.3.7. Histological analysis of oesophageal tissue .. 46

2.3.8. Immunofluorescent detection of TRAIL ... 46

2.3.9. Gene analysis of mouse oesophagi ... 46

2.3.10. Protein quantification in mouse oesophagi ... 47

2.3.11. NK-κB activity ... 48
2.3.12. Flow cytometry..48

2.3.13. Statistical analysis...48

2.4. Results...49

2.4.1. The TRAIL signalling axis is altered in the setting of EoE....................................49

2.4.2. TRAIL regulates PP2Ac and p65 activity in addition to eosinophil and mast cell infiltration..49

2.4.3. Inflammatory cytokines and chemokines involved in EoE are regulated by TRAIL ..52

2.4.4. Oesophageal remodelling in EoE requires TRAIL expression..............................52

2.4.5. TSLP is sufficient to restore *A. fumigatus* induced remodelling in TRAIL deficient mice and TRAIL induces TSLP...52

2.4.6. Eosinophilic inflammation and remodelling are dependent on MID-1 expression ...56

2.4.7. TRAIL expression in the *A. fumigatus* model...56

2.5. Discussion..60

2.6. Footnotes...63

2.6.1. Acknowledgements...63

2.6.2. Author contributions...63

2.6.3. Competing financial interests..63
3. Thesis Chapter 2: TRAIL deficiency and PP2A activation with salmeterol ameliorates egg allergy driven eosinophilic oesophagitis........64

3.1. Abstract...66

3.1.1. Introduction...66

3.1.2. Methods...66

3.1.3. Results...66

3.1.4. Conclusion...66

3.2. Introduction..67

3.3. Methods..69

3.3.1. Collection of patient biopsies...69

3.3.2. Ovalbumin mouse model of EoE...70

3.3.3. Oesophageal circumference analysis...71

3.3.4. Gene expression analysis...71

3.3.5. Protein analysis...72

3.3.6. Histological analysis of oesophageal tissue..72

3.3.7. Statistical analysis...73

3.4. Results...73

3.4.1. Expression of TRAIL and MID-1 in a paediatric cohort of EoE patients........73

3.4.2. EoE patients in remission did not demonstrate increased expression of TRAIL
3.4.3. OVA induced EoE increased TRAIL and MID-1, which was associated with decreased PP2A activity.

3.4.4. TRAIL deficiency prevents eosinophilic inflammation of the oesophagus.

3.4.5. TRAIL regulates inflammatory cytokines in OVA-driven EoE.

3.4.6. Oesophageal remodelling is TRAIL dependent.

3.4.7. Salmeterol administration restores PP2A activity and reduces EoE hallmark features.

3.4.8. Oesophageal inflammation is significantly reduced upon salmeterol treatment.

3.4.9. Ovalbumin induced remodelling features are significantly reduced by salmeterol therapy.

3.5. Discussion

3.6. Funding and competing interests

4. Research Chapter 3: A unique role for IL-13 in eosinophilic oesophagitis through MID-1 and STAT6

4.1. Abstract
4.1.4. Results ..89

4.1.5. Conclusion ..89

4.2. Introduction ...90

4.3. Method ...91

4.3.1. Mouse models of inflammation ...91

4.3.2. Histological analysis of oesophageal eosinophils ..92

4.3.3. RNA extraction and gene expression of oesophageal tissue92

4.3.4. Protein quantification and PP2A activation assay ...93

4.3.5. Statistical analysis ..93

4.4. Results ..93

4.4.1. MID-1 mRNA is induced in WT and Tnfsf10-/- mice, but not in STAT6-/- mice ...93

4.4.2. TRAIL deficiency attenuates IL-13 driven eosinophilia to the oesophagus94

4.4.3. IL-13 upregulates CCL11 and periostin in the oesophagus of wild type in Tnfsf10-/- mice, but not in STAT6-/- ..96

4.4.4. MID-1 siRNA administration restored PP2A activity, but not TRAIL expression, after oesophageal IL-13 exposure ..97

4.4.5. IL-13 driven eosinophilia to the oesophagus and CCL11 expression is ablated in MID-1 silenced mice ..98

4.5. Discussion ..99
4.6. Acknowledgements and competing interests ..102

5. General Discussion ..103

5.1. TRAIL’s role in inflammation and remodelling in EoE103

5.2. Food allergens and the impact on TRAIL signalling104

5.3. Th2 influence on the TRAIL signalling pathway106

5.4. Therapeutic potential of modulating TRAIL associated molecules107

5.5. Summary ...109

5.6. References ...110
Thesis Abstract

Eosinophilic Oesophagitis (EoE) is an allergen mediated disorder of the oesophagus, associated with eosinophilic infiltration of the oesophageal epithelial layer and remodelling of oesophageal scaffolding. There has been a significant rise in EoE prevalence over the past ten years, however, therapeutic strategies to counter hallmark EoE features have remained relatively unchanged from steroid therapy and dietary restrictions. The apoptotic factor TRAIL has previously been implicated in allergic asthma as a driver for immune cell infiltration, remodelling and airway hyperreactivity. The upregulation of TRAIL through allergen exposure results in the induction of MID-1 and subsequent downregulation of PP2A: a negative regulator of NF-κB and MAP kinase inflammatory pathways. Given the similarities between EoE and asthmatic inflammation, this thesis will explore the role of the TRAIL signalling pathway through the analysis of EoE oesophageal human biopsies and the employment of EoE in vivo models.

In chapter 1, TRAIL and MID-1 expression was found to be elevated in EoE patient biopsies and in vivo modelling of Asp F-driven EoE demonstrated an activation of the TRAIL signalling pathway. TRAIL and MID-1 deficiency resulted in an ablation of EoE hallmark features in vivo, including reduced eosinophil infiltration, fibrosis, eotaxins, Th2 cytokines and TSLP, with TSLP recapitulation found to restore disease properties despite TRAIL deficiency. Chapter 2 further analyses the TRAIL signalling pathway in human EoE, demonstrating a correlation in TRAIL and MID-1 protein and mRNA as well as showing a reduction of PP2A activity in EoE patients. Additionally, chapter 2 demonstrated that TRAIL deficiency ablated ovalbumin driven EoE and that restoring PP2A activity via salmeterol therapy was comparable to corticosteroid treatment in vivo. Finally, in chapter 3, the impact of the Th2 cytokine on the TRAIL signalling pathway was assessed in vivo, where MID-1
silencing was found to ablate eotaxin-1 expression and completely abolish eosinophilia into the oesophagus. Given the upregulation of MID-1 in TRAIL deficient, but not STAT6 dependent mice, it is likely that MID-1 can operate independently of TRAIL via STAT6 in IL-13 driven inflammation.

Overall, this thesis has taken multiple approaches in addressing TRAIL’s role in the perpetuation of EoE hallmark features, through the analysis of human biopsies to the employment of multiple EoE mouse models. The studies conducted in this thesis have broadened our understanding of this emerging disorder and highlighted potential therapeutic strategies to combat this disease.