Habitat use and occupancy patterns of the endangered green and golden bell frog (*Litoria aurea*) – implications for conservation management

Jose W. Valdez, M.Sc.

June 2017

This thesis has been submitted for the degree of Doctor of Philosophy with the School of Environmental and Life Sciences

The University of Newcastle

Australia
Statement of Originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

I hereby certify that the work embodied in this thesis contains published papers/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications/scholarly work.

Signed: .. Date: ...
Acknowledgements

There are so many people that have helped me along this journey and there is no possible way I can name them all, but I will try. First, I wish to thank my supervisors for giving me the opportunity to follow my dream of pursuing a Ph.D. in the beautiful country of Australia. The expertise of Michael Mahony taught me how to be a good scientist and ecologist, and his willingness to open up his home to all of us made the lab feel more like a family. The encouragement, patience, and understanding of Michelle Stockwell helped me get through when things got tough. I’m proud to be her first student and thankful for having her on my side. Although John Clulow didn’t speak much, when he did he always offered great insights and you could count on fun and interesting discussions. I am sorry I burned a bit your beard off, but I was always there to help you convert YouTube videos to mp3s, so I guess we are even.

I want to give a big thanks to the Frog Lab who I considered my family for over three years. James Garnham was always there when I needed someone to talk to. His kindness, big heart, and enthusiasm brought joy and positive energy to the lab, while his puns and practical jokes always made me look forward to come to the lab. His willingness to watch “gridiron” football with me helped me feel right at home. I am glad to have had Kaya Klop-Toker as my partner in crime. There was no way I would have been able to complete my Ph.D. without her and I couldn’t imagine co-managing the trial site with anyone else. I also owe a lot to Loren Bainbridge who is now Loren Fardell. It was fun going out and partying for the first time in Newcastle, and I’m glad to have been there that night you met your future husband. I want to thank you for the great friendship, drunken discussions, and all advice we shared together. Working with John Gould was always a delight. I enjoyed seeing him blossom from a shy little bud to a snazzy bright flower. His command of the English language and editing assistance helped turn my manuscripts into works of art. Deborah Bower, was one of my first close friends in Newcastle. The nights spent salsa dancing, ukulele playing, getting into drunken shenanigans, and her enthusiasm for hugs always brightened up my day.
The cohesion of such a large lab could not be maintained without Simon Clulow. His passion for science was only matched his passion for throwing great parties. His critical manuscript reviews were appreciated as it taught us to have thick skins and prepare for the real world. Alex Callen also bought great balance to the lab through her honesty and always speaking her mind when others may have been afraid to do so. I also greatly appreciated Ligia Pizzatto and her lovely personality. Having another fellow Latin American in the lab and going out to dance merengue was always a highlight. Although technically American and technically not part of the lab, Matt Edgar proved he didn’t follow labels by being the most Australian and by working just as hard as anyone else in the lab. I owe him a big thanks for showing me the miracle that is Reddit. I also want to thank my fellow office mates Evan Pickett who is probably the smartest ecological modeller I know and taught me all about cricket and other aspects of Australian culture, Carla “the bunny lady” Pollard for taking me to my first and last Zumba class, and Anna McConville for helping me realize that finishing a Ph.D. was possible. Although he was hard to spot due to his office in a random corner with no windows, David Wright was the New Zealand father figure that the lab. Lastly, none of this work would not have been possible without Kim Colyvas who spent hours upon hours making sure that the best statistical methods were used.

I also had the pleasure of working with the next generation of great ecologists. Maddie Sanders and Amalina Kikkoman for so many memorable and fun nights and for teaching me the difference between Iraq and a hard place. Stephen Mahony who would always impart his herpetological knowledge whether you liked it or not. Hugh James for showing me Bogans can still be cool too. Your “hugh-shine” made sure everyone would have fun along with a three day hangover the next day. Adam Spring for helping me appreciate the fun in everything. Lachlan Campbell and Doug Webb, for always putting up with the crazy shenanigans and practical jokes going on around you. My work would not be possible for the countless volunteers who helped make those 3 am nights interesting. Joe Gibbs energy and enthusiasm would always get you through those long nights, and Mitchell Cromartie for his great stories during those late nights and willingness to always come out and help.
I want to thank the beautiful country of Australia and the University of Newcastle. From your long sandy beaches, to the Sydney Opera house, to the awe-inspiring beauty that is the Blue Mountains, Australia now has a permanent place in my heart. I am lucky to have made so many friends during my time there. Friendships that will last beyond any countries or borders and I will take with me for the rest of my life. I especially grateful for all the friends I met in Salsa and Ultimate Frisbee.

Lastly, I want to thank my family who let me leave to the other side of the world to pursue my dreams. To my mom, dad, my beautiful two sisters, my nephews, and all my extended family I hope I made you guys proud. No matter where in the world I am or how far we are apart you are always right by my side. Thank you.
Contents

Statement of Originality ... i
Acknowledgements ... iii
Abstract .. 1
List of Tables ... 2
List of Figures ... 3
Preface .. 5

Chapter 1. Introduction ... 8
 1.1 Global species decline ... 9
 1.2 Habitat and niche .. 9
 1.2.1 Landscape and population dynamics 10
 1.2.2 Environmental stochasticity 11
 1.2.3 Threatening processes .. 11
 1.3 Amphibians .. 12
 1.3.1 Habitat use .. 12
 1.3.1.1 Life history and habitat requirements 13
 1.3.1.2 Dispersal .. 13
 1.3.1.3 Metapopulation dynamics 14
 1.3.1.4 Microhabitats .. 14
 1.3.2 Causes of amphibian declines 15
 1.3.2.1 Global environmental stressors 15
 1.3.2.1.1 Climate change .. 15
 1.3.2.1.2 UV-B .. 16
 1.3.2.2 Local environmental stressors 16
 1.3.2.2.1 Chemical contaminants 16
 1.3.2.2.2 Habitat loss .. 17
 1.3.2.3 Chytridiomycosis .. 19
 1.3.3 Conservation management ... 20
 1.3.3.1 Improving conservation success 20
 1.4 The green and golden bell frog, Litoria aurea 22
 1.4.1 Causes of L. aurea decline 23
 1.4.1.1 Biotic factors ... 23
 1.4.1.2 Habitat loss and modification 23
 1.5 Ecology of Litoria aurea .. 24
 1.5.1 Life history ... 24
 1.5.2 Habitat use ... 26
 1.5.2.1 Microhabitats .. 26
 1.5.2.2 Water quality .. 26
 1.5.2.3 Habitat requirements 27
 1.6 Habitat creation and reintroduction efforts 27
 1.6.1 Knowledge gaps .. 28
 1.6.2 Kooragang Island .. 29
 1.7 Project aims and objectives .. 30

Chapter 2. Factors driving the distribution of an endangered amphibian toward an industrial landscape in Australia .. 32
 2.1 Abstract ... 33
 2.2 Introduction ... 35
 2.3 Methods ... 37
 2.3.1 Study area ... 37
Chapter 3. Informing compensatory habitat creation with experimental trials: a 3-year study of a threatened amphibian .. 51

3.1 Abstract .. 52
3.2 Introduction .. 54
3.3 Study area ... 56
3.4 Methods .. 56
 3.4.1 Trial plot ... 56
 3.4.2 Captive breeding ... 57
 3.4.3 Field methods .. 58
 3.4.4 Statistical analysis ... 59
3.5 Results .. 60
 3.5.1 Growth .. 60
 3.5.2 Reproduction .. 61
 3.5.3 Competitors and predators 62
 3.5.4 Persistence .. 63
 3.5.5 Apparent survival .. 64
 3.5.6 Relative abundance .. 65
3.6 Discussion .. 66
3.7 Supplementary Material 1 ... 71

Chapter 4. Differences in microhabitat selection patterns between a remnant and constructed landscape following management intervention 73

4.1 Abstract .. 74
4.2 Introduction .. 76
4.3 Materials and Methods .. 79
 4.3.1 Study species .. 79
 4.3.2 Study area .. 80
 4.3.3 Captive breeding ... 81
 4.3.4 Field methodology .. 82
 4.3.5 Detectability .. 82
 4.3.6 Statistical Analysis ... 84
4.4 Results .. 85
4.5 Discussion ... 87

Chapter 5. Microhabitat selection varies by sex and age class in the endangered green and golden bell frog Litoria aurea .. 92

5.1 Abstract .. 93
5.2 Introduction .. 95
5.3 Methods .. 98
 5.3.1 Study site ... 98
 5.3.2 Field methods ... 100
Abstract

Successful management of threatened species requires an understanding of how they use their habitat and respond to management intervention. For this thesis, I investigated the habitat features driving the distribution of the threatened green and golden bell frog (*Litoria aurea*) toward industrial landscapes, and constructed an experimental trial habitat to compare habitat use patterns and determine whether the constructed habitat would support its growth, survival, and persistence. A detectability study was also conducted to determine detection probabilities among various habitat types. The results revealed the most important landscape feature was the number of permanent waterbodies within a kilometre distance which determined *L. aurea* occupancy, colonization, and breeding. The most utilized habitat for all demographic groups was aquatic vegetation while the least utilized was open water. Moreover, accounting for detection probabilities altered the outcomes of nearly all habitat variables, and incorporating them is essential to avoid wrong conclusions. Lastly, the constructed habitat provided *L. aurea* with sufficient resources to grow, survive, and persist for three years. Implications for future conservation management is that a landscape level approach is required to successfully manage this species. Although a relatively small animal, *L. aurea* disperse large distances to waterbodies. While it has been recognized as a colonizing species, this aspect of its life history has been underestimated and largely ignored. The creation of permanent waterbodies is necessary in areas with little interconnectivity, many ephemeral ponds, or where droughts are common. A greater proportion of aquatic vegetation should also be the focus of future *L. aurea* management. Furthermore, large release numbers are necessary to combat its high mortality rates and as buffer against predation and disease. The findings of this thesis also demonstrate that experimental trials prior to implementation of large scale initiatives are highly valuable for informing future habitat management decisions.
List of Tables

Table 2-1. Top 5 sets with covariates modelling Litoria aurea occupancy on Kooragang Island. Models are ranked by ascending ΔAICc, used to estimate occupancy probability (Ψ), extinction probability (ε), colonisation probability (γ) and detection probability (p), modelled as constants (.) or as functions of hydrology (hyd). Covariates that improved model include the number of permanent waterbodies within 1km (perm1k), invertebrate diversity (invertdiv), frog species diversity (frogdiv), and the distance of the nearest permanent waterbody (nearestperm). AIC=Akaike’s Information Criterion, w=weights in favour of each model having the best fit, and K=number of parameters. .. 43

Table 2-2. Estimates of abundance odd ratios with standard error (SE) for variables in the best model predicting L. aurea abundance on Kooragang Island during the 2011–2014 breeding seasons. ... 44

Table 2-3. Estimates of abundance and odds ratio with standard error (SE) for variables in the best model predicting the number of L. aurea calling males and probability of reproduction on Kooragang Island. ... 45

Table 3-1. Top 5 sets with covariates modelling apparent survival and relative abundance of Litoria aurea in the trial plot and NWL. Models are ranked by ascending ΔAICc, used to estimate survival (Ψ) and recapture probability (p) modelled as constants (.) or as functions of year, site, and sex/age class. Covariates estimating relative abundance include season, number of tadpoles released (rel), invertebrate diversity (invertdiv), frog species diversity (frogdiv), tadpole diversity (taddiv), water temperature (wtemp), cloud cover (cc), and an interaction between site and area. AIC=Akaike’s Information Criterion, w=weights in favour of each model having the best fit. 64

Table 4-1. Functional microhabitat groups and descriptions of the available microhabitat used by the green and golden bell frogs (Litoria aurea) during the 2011-14 breeding seasons in naturally occurring ponds and constructed habitat on Kooragang Island. ... 83

Table 5-1. Functional groups and descriptions of the available microhabitat used in occupied ponds by the green and golden bell frogs Litoria aurea between April 2011 and April 2014 on Kooragang Island .. 102
List of Figures

Figure 2-1. Parameter estimates and standard error from the best model predicting occupancy, detection, colonization, and extinction probabilities of L. aurea on Kooragang Island (a). Relationships between the covariates and parameter estimates predicting occupancy colonization, and extinction rates with 95% confidence intervals, including the probability of site occupancy and the number of permanent waterbodies within 1 km (b); the probability of site extinction and the number of amphibian species (e), the number of invertebrate taxa (d), and distance of the nearest permanent waterbody (e); and probability of site colonization and the number of permanent ponds within 1 km (f). ... 43

Figure 2-2. The average number of permanent waterbodies (a), the average distance of the nearest permanent waterbody (b), and the average number amphibian species and invertebrate diversity (c) with standard errors between the national park and industrial sites on Kooragang Island. 45

Figure 3-1. The location of the study site and existing ponds on Kooragang Island, New South Wales, Australia. ... 57

Figure 3-2. The cube root body weight relative to snout to vent length (SVL) of Litoria aurea captured from the trial plot population and the extant Kooragang Island population. 61

Figure 3-3. Yearly L. aurea count totals from weekly trial plot surveys between April 2011 and April 2014; (a) calling males; (b) males with dark nuptial pads; (c) and the number of gravid females. Black bars represent the fenced area; grey bars represent the unfenced area, and white bars represent the northern wetland. ... 62

Figure 3-4. Total tagged L. aurea separated by sex and age class, encountered during weekly monitoring of the trial plot on Kooragang Island from April 2011-April 2014. The trial plot is separated by the fenced and unfenced area and NWL represents the nearby northern wetland. Males, females, and juveniles are represented by grey, white, and black; respectively. 63

Figure 3-5. Parameter estimates and standard errors from the best model predicting (a) probability of survival and (b) recapture rate for L. aurea in the fenced and unfenced areas of the trial plot, and a nearby northern wetland, on Kooragang Island. .. 65

Figure 3-6. Estimates of the best model predicting weekly relative abundance of L. aurea in the trial plot and northern wetland on Kooragang Island, showing relationships between predicted abundance and (a) site of release over time, (b) number of tadpoles released, (c) season, (d) water salinity, (e) number of tadpole species, (f) number of aquatic invertebrate taxa, (g) water temperature, and (h) wind speed, with 95% confidence intervals. .. 65

Figure 4-1. All surveyed ponds on Kooragang Island, New South Wales, Australia. Configuration of (a) compensatory habitat for determining relative detection rates and (b) the trial site where captive-bred L. aurea were released. Dark grey circles represent permanent ponds and white circles with stippled dots represent ephemeral ponds. .. 81
Figure 4-2. Detection probability of frog models for each microhabitat, with standard deviation bars. ... 85

Figure 4-3. Expected proportion of microhabitat selection based on availability, observed proportion of microhabitat selection and proportion adjusted for detection rates, using 95% confidence intervals in the natural L. aurea population on (a) Kooragang Island and (b) trial site. A + symbol indicates habitat was used significantly greater than expected, and a – symbol indicates habitat was used significantly less than expected... 86

Figure 4-4. Proportion of available microhabitats between the trial site and Kooragang Island across ponds. Standard error bars are shown... 87

Figure 5-1. An adult green and golden bell frog, Litoria aurea on aquatic vegetation, Typha orientalis. Photo: Jose Valdez... 98

Figure 5-2. All the surveyed pond sites (in red and with identification numbers) across Kooragang Island, Newcastle, New South Wales. Image created with ArcMap 10.1. 99

Figure 5-3. Examples of waterbodies nocturnally surveyed across Kooragang Island, including aquatic and terrestrial vegetation, rocks, and open water microhabitats. Photo: Jose Valdez...100

Figure 5-4. A female green and golden bell frog, Litoria aurea, about to be weighed, measured, and microchipped. Photo: Jose Valdez... 101

Figure 5-5. Total number of green and golden bell frogs (Litoria aurea) observed in different microhabitat types across Kooragang Island, New South Wales, Australia............... 103

Figure 5-6. Proportion of green and golden bell frogs (Litoria aurea) expected and observed, after accounting for detectability, for each sex and age class on Kooragang Island for (a) bare ground, (b) rocks, (c) vegetation, (d) aquatic vegetation, and (e) open water microhabitats. Asterisks represent significance (p<0.05) of Chi-square test. ... 104
Preface

This thesis is presented as a collection of published and submitted journal articles, each of which addresses a specific aim of this thesis. The papers are linked and integrated into the existing scientific literature by a general introduction chapter and the results summarised in a conclusion chapter.

During my candidature, the research project required replicated field surveys over a relatively large area with wetlands of various sizes and depths. To meet occupational health and safety regulations and for other logistical purposes I worked in a small team with other doctoral students. This meant that we shared the duties of data collection and discussed the implications and findings as a team. The outcome is that we each contributed to the conduct of the research and have co-authored several papers. While I am not the principle author on these publications I was directly involved in the conduct of the field work, discussion of results, analysis and contributed to the writing of the papers. The layout is summarised below:

Chapter 1. Introduction

Chapter 6. Conclusions

List of additional publications and conference presentations relevant to the thesis but not included:

Publications:

Conference Presentations:

All work presented in this thesis was conducted according to the Australian Government National Health and Medical Research Council’s Code of Practice for the Care and Use of Animals for Scientific Purposes and under approval from the University of Newcastle’s Animal Care and Ethics Committee (project no. A-2010-145 and no. A-2011-137). This thesis was funded by BHP Billiton (G1000939). All field work was conducted according to the National Parks and Wildlife Act under the scientific license no. SL10042