A Bayesian Analysis of a Regime Switching Volatility Model

A dissertation presented for the degree of Doctor of Philosophy

By
Glen Livingston Jr
B.Com GradDipCA B.Math (Hons I)

School of Mathematical & Physical Sciences
The University of Newcastle

November 2016
Declaration of Originality

“This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited un the Universities Digital Repository, subject to the provisions of the Copyright Act 1968.”

Glen Livingston Jr
Acknowledgements

Without the assistance and advice of my supervisor Dr Darfiana Nur, the research presented in this thesis would not have been possible. She allowed me the freedom to investigate the topics I felt were important and trusted my judgement in choosing them. While at Newcastle, her office door was always open, and even after her move to Flinders University, was always available for discussions either by email or Skype.

I would like to thank the staff of the School of Mathematical and Physical Sciences that assisted me throughout my study. In particular, I owe a huge thank you to Dr David Allingham for his assistance in running simulation studies in parallel over the Newcastle Research Computer Grid. Without his assistance, I would still be waiting for a simulation study to finish on my laptop. For his advice and general discussions, as well as introducing me to the Bayesian perspective, I must also thank Dr Frank Tuyl.

For assistance in the final editing of this thesis, I thank Dr Teresa Bates. Her valuable suggestions, although often subtle, resulted in a substantial improvement overall.

I would also like to thank the Statistics research students who I had the pleasure of sharing an office with throughout my study. Particularly, I would like to thank Dr Salman Cheema, Sidra Zafar, and Yi-Fan Lin. Our discussions on everything from statistics to cultural practices made my time at the university significantly more enjoyable. Learning and experiencing even just a small part of their culture enriched my time in the office.

While they have never understood exactly what I do, my Mum and Dad have always supported my decision to do it. It is their influence that has directed me to value critical thinking, and for that, I thank them.

Finally, without the support of my wife Jae, this thesis would not have been started or completed. Even after I turned the lounge room into a home office and often complained to her about problems with my research, she always supported me and offered assistance when she thought she could provide it. I am eternally grateful to her.
For Jae.
Contents

Declaration of Originality i
Acknowledgements ii
Abstract xv
Notation xvi

1 Introduction 1

2 Literature Review 7
 2.1 Models 7
 2.1.1 STAR Models 7
 2.1.2 GARCH Models 12
 2.1.3 STAR-GARCH Models 14
 2.1.4 Multivariate STAR Models 16
 2.1.5 Multivariate GARCH Models 20
 2.1.6 Multivariate STAR-GARCH Models 24
 2.2 Algorithms for Posterior Analysis 25
 2.2.1 Gibbs Sampler 26
 2.2.2 Metropolis-Hastings 27
 2.2.3 Algorithms to Improve Acceptance Rates 28
 2.2.4 Reversible Jump 31
 2.3 Model Selection 33
 2.4 Effective Data for RJMCMC 35

3 Univariate Models 38
 3.1 STAR Model 38
 3.1.1 Prior Distribution 40
 3.1.2 Likelihood Function 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3</td>
<td>Posterior Distribution</td>
<td>41</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Posterior Simulator</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Generalised Autoregressive Conditional Heteroskedasticity Models</td>
<td>48</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Prior Distribution</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Likelihood Function</td>
<td>50</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Posterior Distribution</td>
<td>51</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Posterior Simulator</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>STAR-GARCH Models</td>
<td>56</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Prior Distribution</td>
<td>58</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Likelihood Function</td>
<td>59</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Posterior Distribution</td>
<td>59</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Posterior Simulator</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusion</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>Multivariate Models</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Vector Autoregressive</td>
<td>71</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Likelihood Function</td>
<td>72</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Prior Distribution</td>
<td>73</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Posterior Distribution</td>
<td>74</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Posterior Simulator</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Multivariate STAR</td>
<td>80</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Likelihood Function</td>
<td>82</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Prior Distribution</td>
<td>83</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Posterior Distribution</td>
<td>84</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Posterior Simulator</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>Multivariate GARCH</td>
<td>93</td>
</tr>
<tr>
<td>4.3.1</td>
<td>VECH Conditional Covariance Equation</td>
<td>95</td>
</tr>
<tr>
<td>4.3.2</td>
<td>BEKK Conditional Covariance Equation</td>
<td>97</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Prior Distribution</td>
<td>98</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Likelihood Function</td>
<td>99</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Posterior Distribution</td>
<td>100</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Posterior Simulator</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Multivariate STAR-GARCH</td>
<td>111</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Prior Distribution</td>
<td>113</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Likelihood Function</td>
<td>114</td>
</tr>
</tbody>
</table>
F.1.4 RJN - Constant to BEKK\((l^*, m^*)\) ... 261

F.1.5 RJN - BEKK\((l, m)\) to Constant ... 263

F.1.6 RJN - DBEKK\((l, m)\) to BEKK\((l^*, m^*)\) .. 264

F.1.7 RJN - BEKK\((l, m)\) to DBEKK\((l^*, m^*)\) .. 266
List of Figures

2.1 Perspective plot of transition function. ... 9

5.1 Posterior probability distributions for $N = 150$ (top left) and $N = 225$ (top right), and
the posterior probability distribution for the difference in proportions where $N = 225$
(bottom). ... 139

5.2 Time plot of simulated STAR data x_t from S-I (top), and time plot of the simulated
transition variable over the transition function F_t (grey) with the horizontal line at the
true value of the location parameter c (bottom). ... 141

5.3 An example set of parameter posterior distributions from S-I. The red lines indicate the
positions of the true values for each parameter. ... 141

5.4 Time plot of simulated STAR data x_t from S-II (top) and time plot of the simulated
transition variable over the transition function F_t (grey) with the horizontal line at the
true value of the location parameter c (bottom). ... 143

5.5 An example set of parameter posterior distributions from S-II. The red lines indicate
the positions of the true values for each parameter. ... 144

5.6 Monthly US unemployment rate from 1960 to 2004 time series plots: the original rate U_t
(top); the transformed rate x_t (middle); and the seasonally differenced rate s_t (bottom). 145

5.7 Posterior histogram for γ (left) and c (right) showing the density of the respective prior
distributions (dashed line) for the US unemployment data. ... 147

5.8 US unemployment rate x_t with fitted values \hat{x}_t (red), together with the corresponding
rescaled fitted transition function \hat{F}_t (grey). ... 147

5.9 Time plot of simulated GARCH data x_t from G-I. ... 148

5.10 An example set of parameter posterior distributions from G-I. The red lines indicate the
positions of the true values for each parameter. ... 148

5.11 Time plot of simulated GARCH data x_t from G-II. ... 149

5.12 An example set of parameter posterior distributions from G-II. The red lines indicate
the positions of the true values for each parameter. ... 150

5.13 Distribution of point estimates for α_0 from G-II. ... 150

5.14 Time plot of the daily DEM/GBP foreign exchange log returns between 3 January 1985
to 31 December 1991 (top) and the conditional variance calculated on a rolling window
(bottom). ... 151

5.15 Posterior distributions for N_j and the coefficient parameter vector α for the first $N = 750$
observations. ... 152

5.16 Posterior distributions for N_j and the coefficient parameter vector α for the whole $N =
1,974$ observations. .. 152
5.17 Fitted conditional variance for the DEM/GBP exchange log returns using the whole $N = 1,974$ observations. ... 153

5.18 Time plot of simulated STAR-GARCH data x_t from SG-I. 154

5.19 An example set of parameter posterior distributions from SG-I. The red lines indicate the positions of the true values for each parameter. .. 156

5.20 Time plot of simulated STAR-GARCH data x_t from SG-II. 156

5.21 An example set of parameter posterior distributions from SG-II. The red lines indicate the positions of the true values for each parameter. .. 157

5.22 Time plot of simulated STAR-GARCH data x_t from SG-III. 159

5.23 An example set of parameter posterior distributions from SG-III. The red lines indicate the positions of the true values for each parameter. .. 160

5.24 Time plot of the monthly SOI from January 1876 to December 2015 (top) and the conditional variance calculated on a rolling window (bottom). ... 161

5.25 Transition function from pilot run on the conditional mean for SOI data. 161

5.26 Posterior distributions for γ (left) and c (right) from full algorithm applied to the monthly SOI data, together with the prior densities (dashed lines). .. 162

5.27 Posterior distributions for the monthly SOI data. .. 163

5.28 Time plot of the monthly SOI data x_t with fitted values \hat{x}_t (red), together with the corresponding rescaled fitted transition function \hat{F}_t (grey), (top); and fitted conditional variance \hat{h}_t (bottom). ... 164

5.29 Time plot of simulated M-STAR data \mathbf{x}_t from MS-I. 166

5.30 An example set of parameter posterior distributions from MS-I. The red lines indicate the positions of the true values for each parameter. .. 166

5.31 An example set of parameter posterior distributions from MS-I (continued). The red lines indicate the positions of the true values for each parameter. .. 167

5.32 An example set of parameter posterior distributions from MS-I (continued). The red lines indicate the positions of the true values for each parameter. .. 168

5.33 Time plot of simulated M-STAR data \mathbf{x}_t from MS-II. 170

5.34 An example set of parameter posterior distributions from MS-II. The red lines indicate the positions of the true values for each parameter. .. 172

5.35 An example set of parameter posterior distributions from MS-II (continued). The red lines indicate the positions of the true values for each parameter. .. 173

5.36 An example set of parameter posterior distributions from MS-II (continued). The red lines indicate the positions of the true values for each parameter. .. 174

5.37 Time plots for the Jökulsá river flow (top); Vatnsdalsá river flow (middle); and the precipitation (bottom). ... 174

5.38 Time plots of the MCMC chains for γ (top); c (middle); and d (bottom). 176

5.39 Posterior distributions for the parameters γ and c for the river flow data. The prior densities are shown as a dashed line. ... 176

5.40 Posterior distributions for the M-STAR model fitted to the Icelandic river flow data. 177
5.41 Time plots for the actual (black) and the fitted (red) values for Jökulsá (top) and Vatnshalsá (bottom) river flow. ... 179

5.42 Time plot of the fitted transition function F_t (left) and the fitted transition function F_{t+1} plotted against the transition variable s_t (right). 179

5.43 Time plot of simulated data x_t from the bivariate VECH model in (5.6.11). 180

5.44 An example set of parameter posterior distributions for the VECH model. The red lines indicate the positions of the true values for each parameter. 181

5.45 A typical set of MCMC chains for the VECH algorithm showing a failure of the chains to converge. ... 182

5.46 Time plot of simulated M-GARCH data x_t from MG-I. ... 184

5.47 An example set of parameter posterior distributions from MG-I. The red lines indicate the positions of the true values for each parameter. 185

5.48 Time plot of simulated M-GARCH data x_t from MG-II. ... 186

5.49 An example set of parameter posterior distributions from MG-II. The red lines indicate the positions of the true values for each parameter. 188

5.50 Daily share prices for BHP Limited and Rio Tinto Limited. 189

5.51 Time plots of the log returns $x_{1,t}$ and $x_{2,t}$, for BHP Limited and Rio Tinto Limited respectively. ... 189

5.52 Sample variances of a rolling window of length 10, for BHP Limited and Rio Tinto Limited. 190

5.53 Posterior distributions for the M-GARCH model fitted to the BHP Limited and Rio Tinto Limited data. ... 191

5.54 Estimated conditional covariances (top and bottom left) and correlation (bottom right) over the time period, for the BHP Limited and Rio Tinto Limited data. 192

5.55 Time plot of simulated M-STAR-GARCH data x_t from MSG-I. 193

5.56 An example set of parameter posterior distributions from MSG-I. The red lines indicate the positions of the true values for each parameter. 194

5.57 An example set of parameter posterior distributions from MSG-I (continued). The red lines indicate the positions of the true values for each parameter. 195

5.58 An example set of parameter posterior distributions from MSG-I (continued). The red lines indicate the positions of the true values for each parameter. 196

5.59 Time plot of simulated M-STAR-GARCH data x_t from MSG-II. 199

5.60 An example set of parameter posterior distributions from MSG-II. The red lines indicate the positions of the true values for each parameter. 201

5.61 An example set of parameter posterior distributions from MSG-II (continued). The red lines indicate the positions of the true values for each parameter. 202

5.62 An example set of parameter posterior distributions from MSG-II (continued). The red lines indicate the positions of the true values for each parameter. 203

5.63 Time plots for the Jökulsá river flow (top); Vatnshalsá river flow (middle); and the precipitation (bottom). ... 203

5.64 Sample variances of a rolling window of length 10 for the Jökulsá river flow (top) and Vatnshalsá river flow (bottom). ... 204
5.65 Posterior distributions for the M-STAR-GARCH model fitted to the Icelandic river flow data. ... 205

5.66 Posterior distributions for the M-STAR-GARCH model fitted to the Icelandic river flow data (continued). ... 206

5.67 Time plots for the actual (black) and the fitted (red) values for Jökulsá (top) and Vatnsdalsá (bottom) river flow. ... 207

5.68 Time plot of the fitted transition function \(F_t \) (left) and the fitted transition function \(F_t', \) plotted against the transition variable \(s_t \) (right). ... 208

5.69 Posterior distributions for the unconstrained M-STAR-GARCH model fitted to the Icelandic river flow data. ... 210

5.70 Posterior distributions for the unconstrained M-STAR-GARCH model fitted to the Icelandic river flow data (continued). ... 211

5.71 Fitted transition function over time (left); transition function plotted against the transition variable (right), both for unconstrained case. ... 212

5.72 Time plots for actual (black) and fitted (red) values for Jökulsá (top) and Vatnsdalsá (bottom) river flow for the unconstrained case. ... 213

5.73 Fitted conditional covariance and correlation over the time period for the unconstrained case. ... 213
List of Tables

3.1 Index of GARCH(l, m) models. .. 49
3.2 Index of GARCH(l, m) models. .. 58

4.1 Index of M-GARCH models. .. 98
4.2 Index of M-GARCH models. .. 123

5.1 Summary statistics for the simulated STAR model of S-I. 142
5.2 Summary statistics for the simulated STAR model of S-II. 143
5.3 Summary statistics for the US unemployment data. 146
5.4 Summary statistics for the simulated GARCH model of G-I. 149
5.5 Summary statistics for the simulated GARCH model of G-II. 149
5.6 Summary statistics for the DEM/GBP exchange log returns for the first $N = 750$ observations. .. 151
5.7 Summary statistics for the DEM/GBP exchange log returns for the whole $N = 1,974$ observations. .. 153
5.8 Summary statistics for the simulated STAR-GARCH model of SG-I. 155
5.9 Summary statistics for the simulated STAR-GARCH model of SG-II. 158
5.10 Summary statistics for the simulated STAR-GARCH model of SG-III. ... 159
5.11 Summary statistics for the SOI data. .. 162
5.12 Summary statistics for the simulated M-STAR model of MS-I. 169
5.13 Summary statistics for the simulated M-STAR model of MS-II. 170
5.14 Summary statistics for the simulated M-STAR model of MS-II (continued). ... 171
5.15 Parameter estimates for the M-STAR model fitted to the Icelandic river flow data. ... 178
5.16 Index of M-GARCH models. .. 183
5.17 Summary statistics for the simulated M-GARCH model of MG-I. 185
5.18 Summary statistics for the simulated M-GARCH model of MG-II. 187
5.19 Point estimates and credible intervals for the BHP Limited and Rio Tinto Limited data. 191
5.20 Summary statistics for the simulated M-STAR-GARCH model of MSG-I. 196
5.21 Summary statistics for the simulated M-STAR-GARCH model of MSG-I (continued). 197
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.22</td>
<td>Summary statistics for the simulated M-STAR-GARCH model of MSG-II.</td>
<td>200</td>
</tr>
<tr>
<td>5.23</td>
<td>Summary statistics for the simulated M-STAR-GARCH model of MSG-II (continued).</td>
<td>201</td>
</tr>
<tr>
<td>5.24</td>
<td>Parameter estimates for the M-STAR-GARCH model fitted to the Icelandic river flow data.</td>
<td>205</td>
</tr>
<tr>
<td>5.25</td>
<td>Parameter estimates for the M-STAR-GARCH model fitted to the Icelandic river flow data with unconstrained conditional covariance.</td>
<td>209</td>
</tr>
<tr>
<td>5.26</td>
<td>Comparison of point estimates for the contained and unconstrained M-STAR-GARCH models.</td>
<td>209</td>
</tr>
</tbody>
</table>
Abstract

Non-linear time series data is often generated by complex systems. While linear models provide a good first approximation of a system, often a more sophisticated non-linear model is required to properly account for the features of such data. Correctly accounting for these features should lead to the fitting of a more appropriate model.

Determining the features exhibited by a particular data set is a difficult task, particularly for inexperienced modellers. Therefore, it is important to move towards a modelling paradigm where little to no user input is required, in order to open statistical modelling to users less experienced in MCMC. This sort of modelling process requires a general class of models that is able to account for the features found in most linear and non-linear data sets. One such class is the STAR-GARCH class of models. These are reasonably general models that permit regime changes in the conditional mean and allow for changes in the conditional covariance.

In this thesis, we develop original algorithms that combine the tasks of parameter estimation and model selection for univariate and multivariate STAR-GARCH models. The model order of the conditional mean and the model index of the conditional covariance equation are included as parameters for the model requiring estimation.

Combining the tasks of parameter estimation and model selection is facilitated through the Reversible Jump MCMC methodology. Other MCMC algorithms employed for the posterior distribution simulators are the Gibbs sampler, Metropolis-Hastings, Multiple-Try Metropolis and Delayed Rejection Metropolis-Hastings algorithms. The posterior simulation algorithms are successfully implemented in the statistical software program R, and their performance is tested in both extensive simulation studies and practical applications to real world data.

The current literature on multivariate extensions of STAR, GARCH, and STAR-GARCH models is quite limited from a Bayesian perspective. The implementation of a set of estimation algorithms that not only provide parameter estimates but is also able to automatically fit the model with highest posterior probability is a significant and original contribution. The impact of such a contribution will hopefully be a step forward on the path towards the automation of time series modelling.
Below are some details of the notation and functions used throughout this thesis unless stated otherwise.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_t</td>
<td>Univariate data point.</td>
</tr>
<tr>
<td>x</td>
<td>Complete univariate data set.</td>
</tr>
<tr>
<td>x_t</td>
<td>Multivariate data point.</td>
</tr>
<tr>
<td>X</td>
<td>Complete multivariate data set.</td>
</tr>
<tr>
<td>C, Σ, H</td>
<td>Upper case symbol indicates a matrix.</td>
</tr>
<tr>
<td>H, Φ</td>
<td>Bold and upper case indicates a matrix made up of either a vector of vectors, or a matrix of matrices.</td>
</tr>
<tr>
<td>I_n</td>
<td>$n \times n$ identity matrix.</td>
</tr>
<tr>
<td>Ω^T</td>
<td>Transpose of the matrix Ω.</td>
</tr>
<tr>
<td>$\text{tr}(\Omega)$</td>
<td>Trace of the square matrix Ω.</td>
</tr>
<tr>
<td>$p(\Theta</td>
<td>\Omega)$</td>
</tr>
<tr>
<td>$\text{vec}(\Omega)$</td>
<td>Stacking the columns of the matrix Ω into a column vector.</td>
</tr>
<tr>
<td>$\text{vech}(\Omega)$</td>
<td>Stacking the lower triangle of the matrix Ω into a column vector.</td>
</tr>
<tr>
<td>$\exp[\omega]$</td>
<td>e^ω.</td>
</tr>
<tr>
<td>$A \odot B$</td>
<td>The component-wise multiplication of the matrices A and B.</td>
</tr>
<tr>
<td>$A \otimes B$</td>
<td>The Kronecker product of the matrices A and B.</td>
</tr>
<tr>
<td>$\Gamma_p(n)$</td>
<td>The multivariate gamma function.</td>
</tr>
<tr>
<td>$\mathcal{N}(\mu, \sigma^2)$</td>
<td>Univariate normal distribution with mean μ and variance σ^2. The density of the distribution is given by $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{1}{2\sigma^2} (x - \mu)^2 \right]$.</td>
</tr>
<tr>
<td>$\mathcal{N}_p(\mu, \Sigma)$</td>
<td>Multivariate normal distribution with mean μ and covariance matrix Σ for x, a column vector of length p. The density of the distribution is given by $f(x) = (2\pi)^{-\frac{p}{2}}</td>
</tr>
<tr>
<td>$\mathcal{N}_{n,p}(M,U,V)$</td>
<td>Matrix normal distribution with $n \times p$ location matrix M, $n \times n$ scale matrix U, and $p \times p$ scale matrix V for X, an $n \times p$ matrix. The density of the distribution is given by $f(X) = \frac{\exp \left[-\frac{1}{2} \text{tr} \left(V^{-1} (X - M)^T U^{-1} (X - M) \right) \right]}{(2\pi)^{-\frac{np}{2}}</td>
</tr>
<tr>
<td>$\mathcal{G}(\alpha, \beta)$</td>
<td>Gamma distribution with shape and rate parameters α and β, respectively. The density of the distribution is given by $f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \exp (-\beta x)$.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>IG (α, β)</td>
<td>Inverse Gamma distribution with shape and scale parameters α and β, respectively. The density of the distribution is given by $f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha-1} \exp\left(-\frac{\beta}{x}\right)$.</td>
</tr>
<tr>
<td>$W(V, n)$</td>
<td>Wishart distribution with scale matrix V and degrees of freedom n for X, a $p \times p$ matrix. The density of the distribution is given by $f(X) = \frac{</td>
</tr>
<tr>
<td>IW(Ψ, ν)</td>
<td>Inverse Wishart distribution with scale matrix Ψ and degrees of freedom ν for X, a $p \times p$ matrix. The density of the distribution is given by $f(X) = \frac{\Psi^{\frac{\nu}{2}}}{2^{\frac{n(p-1)}{2}}} \left</td>
</tr>
<tr>
<td>$T_p(\mu, \Sigma)$</td>
<td>Multivariate t-distribution with location vector μ, degrees of freedom ν, and scale matrix Σ for x, a column vector of length p. The density of the distribution is given by $f(x) = \frac{\Gamma \left(\frac{\nu+p}{2}\right)}{\Gamma \left(\frac{\nu}{2}\right) \nu^{\frac{p}{2}} \pi^{\frac{p(p-1)}{2}}} \left</td>
</tr>
<tr>
<td>$U(a, b)$</td>
<td>Uniform distribution over the range a to b. The density of the distribution is given by $f(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \ 0 & \text{otherwise} \end{cases}$.</td>
</tr>
</tbody>
</table>