Thesis title:

SMALL MOLECULE INHIBITORS OF
THE HEDGEHOG SIGNALLING PATHWAY
AS CANCER SUPPRESSING AGENTS

Thesis submitted in fulfilment of the requirement for the award of the degree of

DOCTOR OF PHILOSOPHY

(BIOLOGICAL SCIENCES)

BY

Nguyen Trieu Trinh

M.S.

Supervisors: Prof. Adam McCluskey
 Prof. Eileen A. McLaughlin
 Dr. Christopher P. Gordon

April 2016
Statements of originality and authorship

I hereby certify that this thesis contains no material which has been accepted for the award of any other degree or diploma in any University or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Furthermore, I hereby certify that the work embodied in this thesis contains published journal articles of which I am the first author. I have included as part of the thesis a written statement, endorsed by my primary supervisor, attesting to my contribution to the joint publications.

Nguyen Trieu Trinh
29 April 2016
Acknowledgements

First, I would like to warmly thank all of my supervisors Prof. Adam McCluskey, Prof. Eileen A. McLaughlin and Dr. Christopher P. Gordon for teaching, supporting and guiding me through this amazing journey. Adam, without you I wouldn’t be here in this beautiful city, and there would be no story to tell. I am lucky to be in your very well-equipped lab, where I have met wonderful people and developed my expertise in organic chemistry. I really appreciate all of your support, guiding and generosity during my research. Eileen, I will never forget the way you quickly and positively manage things, that’s something so specific. Big issues become small and the small ones disappear when working with you, and that was always my privilege. It’s my great honour to be a member of your lab, where people are so experienced, dedicated, and very supportive to guide me through the interesting biological assays. And Chris, you are so special, you taught me from the very beginning steps of my journey. Your explanations were quite simple to understand, and they have nurtured my passion and confidence in chemistry. You are an awesome teacher with whom every student would love to work with. You are always helping me and I am very grateful for that.

I would like to acknowledge my Prime Minister’s Australia Asia Postgraduate Endeavour Awards, for giving me this precious chance to do high ranking research, as well as experience the exciting multicultural environment in Australia.

Thank you to all my friends and colleagues for supporting me in my research:

- **McCluskey’s group**: Kelly, Jen, Peter, Laura, Cec, Fiona, Andrew L., Andrew S., Joey, Brad, Ahmed, Lacey, Mohamed, Mark R, Mark T, and Azadeh.
- **McLaughlin’s group**: Ilana, Victoria, Kate, Jessie, Nicole, and Bettina. Special thanks to Ilana and Victoria who were patient enough to teach me how to do the biological assays, and Kate for valuable comments on my drafts.

Special thanks to the technical and administrative staffs, who always quickly supported me whenever I was in need of anything: Ben, Monica, Nathan, Michael, Stene, Steven, Vicky, Anna, and Andrea. Your help certainly made my life a lot easier.

And lastly, it’s never enough to thank my beloved family: My wife Anh Le and my little girl Liuda Trinh, who are always supporting, sacrificing, and believing in me; my Mother, brothers, sister, and my late Dad who always take pride in me. Without you I am nothing. Thank you all so much.
Statement of contribution

I hereby certify that this thesis is submitted in the form of a series of published/submitted papers of which I am the first author. I have included as part of the thesis a written statement from each senior co-author; and endorsed by the Faculty Assistant Dean of Research Training, attesting to my contribution to the following joint publications:

Nguyen Trieu Trinh
Date: 02/11/2016
Statement of contribution of others

I, Adam McCluskey, attest that Research Higher Degree candidate Nguyen Trieu Trinh was responsible for the design and development of synthetic procedures, synthesis, and purification of synthesised analogues, biological testings, and the writing of publication manuscripts for the paper/publications entitled:

Adam McCluskey
Signature of Co-author
Full name of Co-author
Date: 2 November 2016

Nguyen Trieu Trinh
(Signature of Candidate)
Full name of Candidate
Date: 2 Nov 2016

Signature of Assistant Dean of Research Training (ADRT)
Full name of ADRT
Date:
I, Eileen McLaughlin, attest that Research Higher Degree candidate Nguyen Trieu Trinh was responsible for the design and development of synthetic procedures, synthesis, and purification of synthesised analogues, biological testings, and the writing of publication manuscripts for the paper/publications entitled:

Eileen Anne McLaughlin

Signature of Co-author

Full name of Co-author

Date: 02/11/16

Nguyen Trieu Trinh

(Signature of Candidate)

Full name of Candidate

Date: 03/11/16

Signature of Assistant Dean of Research Training (ADRT)

Full name of ADRT

Date:
I, Christopher Gordon, attest that Research Higher Degree candidate Nguyen Trieu Trinh was responsible for the design and development of synthetic procedures, synthesis, and purification of synthesised analogues, biological testings, and the writing of publication manuscripts for the paper/publications entitled:

Christopher Gordon
Signature of Co-author
Full name of Co-author
Date: 6/11/2016

Nguyen Trieu Trinh
(Signature of Candidate)
Full name of Candidate
Date:

Signature of Assistant Dean of Research Training (ADRT)
Full name of ADRT
Date:

vii
I, Ilana Bernstein, attest that Research Higher Degree candidate Nguyen Trieu Trinh was responsible for the design and development of synthetic procedures, synthesis, and purification of synthesised analogues, biological testings, and the writing of publication manuscripts for the paper/publications entitled:

Signature of Co-author
Full name of Co-author
Date: 03/11/16

Nguyen Trieu Trinh
Full name of Candidate
Date: 3 Nov 2016

Signature of Assistant Dean of Research Training (ADRT)
Full name of ADRT
Date:
I, Jennette Sakoff, attest that Research Higher Degree candidate Nguyen Trieu Trinh was responsible for the design and development of synthetic procedures, synthesis, and purification of synthesised analogues, biological testings, and the writing of publication manuscripts for the paper/publications entitled:

Signature of Co-author

Full name of Co-author

Jennette A Sakoff PhD
Chief Hospital Scientist
Department of Medical Oncology
Calvary Mater Newcastle Hospital, NSW

Date: 02/11/2016

Nguyen Trieu Trinh

(Signature of Candidate)

Full name of Candidate

Date: 03 Nov 2016

Signature of Assistant Dean of Research Training (ADRT)

Full name of ADRT

Date:
I, Peter Cossar, attest that Research Higher Degree candidate Nguyen Trieu Trinh was responsible for the design and development of synthetic procedures, synthesis, and purification of synthesised analogues, biological testings, and the writing of publication manuscripts for the paper/publications entitled:

Signature of Co-author
Date: 2. 11. 16
Full name of Co-author

Nguyen Trieu Trinh
(Signature of Candidate)
Date: 3 Nov 2016
Full name of Candidate

Signature of Assistant Dean of Research Training (ADRT)
Full name of ADRT
Date:
I, Lacey Hizartzidis, attest that Research Higher Degree candidate Nguyen Trieu Trinh was responsible for the design and development of synthetic procedures, synthesis, and purification of synthesised analogues, and the writing of publication manuscripts for the paper/publications entitled:

Signature of Co-author

Date: 02/11/2016

Lacey Hizartzidis

Full name of Co-author

Nguyen Trieu Trinh

(Signature of Candidate)

Date: 3 Nov 2016

Full name of Candidate

Signature of Assistant Dean Training (ADRT)

Full name of ADRT

Date: of Research
Contents

Statements of originality and authorship .. ii
Acknowledgements ... iii
Statement of contribution ... iv
ABSTRACT ... xiv
ABBREVIATIONS .. xvi

I. CHAPTER ONE: Literature review .. 20
 1.1. Introduction ... 21
 1.2. Updates on recent development of HSP’s inhibitors 39
 1.2.1 Smo inhibitors ... 39
 1.2.2. Inhibitors targeting Gli transcription factors .. 39
 1.3. Conclusions and project aims ... 42
 1.4. Updated references ... 44

II. CHAPTER TWO .. 48
Flow synthesis towards current HSP inhibitors ... 48
 2.1. Introduction ... 49
 2.2. Updated references ... 60

III. CHAPTER THREE ... 61
Quinolone-1-(2H)-ones as Hedgehog Signalling Pathway Inhibitors 61
 3.1. Introduction ... 62
 3.2. References ... 75

IV. CHAPTER FOUR .. 76
Next generation inhibitors of the HSP: Targeting the Gli transcription factors 76
 4.1. Introduction ... 77
 4.2. References ... 93

V. CHAPTER FIVE .. 94
Discovery of the 1,3-thiazine-6-phenylimino-5-carboxylate analogues 94
 5.1. Introduction ... 95
 5.2. References ... 100

VI. CHAPTER SIX .. 101
Conclusions and future directions ... 101
 6.1. References ... 104

VII. CHAPTER SEVEN .. 105
EXPERIMENTAL SECTION ..105
 7.1. General chemistry ...106
 7.2. Biological investigations ..107
 7.2.1. Cell culture and stock solutions ..107
 7.2.2. In vitro growth inhibition assay ..107
 7.2.3. Dual Luciferase Reporter assay ..108
 7.2.4. RNA Extraction ..108
 7.2.5. Reverse Transcription PCR (RT-PCR) and Quantitative PCR (qPCR)108
 7.2.6. Statistical analysis ..111
 7.3. Synthesis data ..111
 7.3.1. Synthesis of the furan based biaryls (Chapter 2) ..111
 7.3.2. Synthesis of the quinolone-1-(2H)-ones (Chapter 3) ..118
 7.3.3. Synthesis of the tryptophan and indole based analogues (Chapter 4)124
 7.3.4. Synthesis of the 1,3-thiazine-6-phenylimino-5-carboxylates (Chapter 5)136
 7.4. References ..142

VIII. CHAPTER EIGHT ..143
SUPPORTING INFORMATION ...143
 8.1. Appendix to Chapter 2 ..144
 8.2. Appendix to Chapter 3 ..188
 8.2.1 Biological investigation ..188
 8.2.2. Compounds characterization ...199
 8.3. Appendix to Chapter 4 ..280
 8.3.1. Biological investigation ...280
 8.3.2. Compounds characterization ..303
 8.4. Appendix to Chapter 5 ..443
 8.4.1. Compounds characterization ..443
Among various options to treat cancers, targeting the signalling pathways that are differentially expressed in specific cancer cells has developed as a promising approach. Whilst huge benefits of targeted therapies have been obtained with less severe side effects and higher survival rates than past experiences with traditional cytotoxic chemotherapy, the application of selective targeting is hindered and in part determined by the knowledge of the molecular biology of each cancer. Cancers are so diverse in nature expressing distinctive signalling pathways or components, whose biological elucidation is challenging but invaluable to the development of cancer treatment. In this respect, the Hedgehog Signalling Pathway (HSP) has become as an attractive target in a number of human cancers thanks to its unique mechanism of activity.

The HSP plays a pivotal role in the spatial and temporal regulation of cell proliferation and differentiation. Conversely aberrant Hh signalling is involved in Gorlin syndrome, basal cell carcinoma (the most common cancer in the world), and more than one third of all human medulloblastoma cases. In all of these cases, it is believed that deregulated Hh signalling leads to increased cell proliferation and tumour formation. Inhibition of the Hedgehog Signalling Pathway, is a recently validated anti-cancer drug target, with vismodegib (GDC-0449, Erivedge®) and sonidegib (LDE225, Odomzo®), approved by the U.S. Food and Drug Administration for treatment of early and advanced basal cell carcinomas.

We developed three new scaffolds of small molecule inhibitors of the HSP. The first scaffold consisted of 11 quinolone-2-(1H)-ones developed from a sequential Ugi-Knoevenagel reaction pathway (Chapter 3). These analogues not only express their anti-hedgehog activity through the significant inhibition of Gli2 at both gene and protein expression in SAG-activated Shh LIGHT 2 cells at 10 and 25 µM, respectively, but are able to suppress a panel of nine human HSP expressing cancer cells (GI50 from 2.9 to 18.0 µM). Whilst the exact mechanism remains to be determined, it is probable the inhibition observed is occurring downstream of Smo, due to its activity in the presence of SAG, a potent Smo activator.

Subsequent second and third generation analogues were developed on the quinolone-2-(1H)-one pharmacophore, which highlighted the importance of a C3-tethered indole moiety. These new scaffolds were built on tryptophan (9 analogues, Chapter 4) and benzo[1,3]dioxol-5-ylmethyl-[2-(1H-indol-3-yl)-ethyl]-amine derivatives (11 analogues, Chapter 4) displaying superior inhibitory activity against Gli protein expression with the best inhibitors displaying submicromolar IC50 (Chapter 4). Noteworthy, active compounds from the second and third libraries displayed inhibitory activity downstream of Smo, which circumvents the resistance issues experienced by the Smo inhibitors currently in use.
We discovered the fourth library of 1,3-thiazine-6-phenylimino-5-carboxylates in a multicomponent one pot synthesis (12 analogues, Chapter 5). These analogues display structural similarities to HPI-1, a non-selective Gli inhibitor, and thus may present themselves as HSP inhibitors. Current biological evaluation is going on to investigate their anti-hedgehog properties.

Additionally, using flow technique we have synthesised the potent Smo inhibitor LDE-225, as well as a number of aldehydes containing the furan-based biaryl motif (Chapter 2). This motif is available in biological active compounds, including the HSP inhibitors, and thus presents an opportunity to develop new scaffolds of HSP inhibitors.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>13C</td>
<td>Carbon-13 nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>1H</td>
<td>Proton nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>3CR</td>
<td>Three component reaction</td>
</tr>
<tr>
<td>4CR</td>
<td>Four component reaction</td>
</tr>
<tr>
<td>A2780</td>
<td>Human ovarian carcinoma cell line</td>
</tr>
<tr>
<td>Ac</td>
<td>Acetate</td>
</tr>
<tr>
<td>Acetone-d_6</td>
<td>Deuterated acetone</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>AcOH</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>Ar</td>
<td>Aromatic</td>
</tr>
<tr>
<td>BCC</td>
<td>Basal cell carcinoma</td>
</tr>
<tr>
<td>BCL2</td>
<td>B-cell CLL/lymphoma 2</td>
</tr>
<tr>
<td>BE2-C</td>
<td>Human neuroblastoma cell line</td>
</tr>
<tr>
<td>BM11</td>
<td>B lymphoma Mo-MLV insertion region 1 homolog</td>
</tr>
<tr>
<td>BRD4</td>
<td>Bromodomain-containing protein 4</td>
</tr>
<tr>
<td>bs</td>
<td>Broad singlet (NMR)</td>
</tr>
<tr>
<td>C3H10T1/2</td>
<td>Mouse mesenchymal cell line</td>
</tr>
<tr>
<td>CatCart™</td>
<td>Catalyst cartridges for use in ThalesNano flow reactors</td>
</tr>
<tr>
<td>CDC13</td>
<td>Deuterated chloroform</td>
</tr>
<tr>
<td>CK1</td>
<td>Casein kinase 1</td>
</tr>
<tr>
<td>CML</td>
<td>Chronic myeloid leukaemia</td>
</tr>
<tr>
<td>CSC</td>
<td>Cancer stem cell</td>
</tr>
<tr>
<td>d</td>
<td>Doublet (NMR)</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of doublet (NMR)</td>
</tr>
<tr>
<td>Dhh</td>
<td>Desert hedgehog</td>
</tr>
<tr>
<td>DIPEA</td>
<td>Diisopropylamine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DMSO-d_6</td>
<td>Deuterated dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DU145</td>
<td>Human prostate carcinoma cell line</td>
</tr>
<tr>
<td>ELK1</td>
<td>ETS-like gene 1</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl acetate</td>
</tr>
</tbody>
</table>
EtOH Ethanol
FC FibreCat
Fmoc Fluorenylmethyloxycarbonyl chloride
g Gram
GI₅₀ Concentration of drug that reduces cell growth by 50% relative to an untreated control
Gli,_{1,2,3} Glioma-associated oncogene homolog 1,2,3
GLI Glioma-associated protein
GSK3β Glycogen synthase kinase 3β
h Hour
H460 Human lung carcinoma cell line
HATU 1-[(Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate
HCl Hydrochloric acid
H-Cube Pro™ Flow hydrogenation reactor
HDAC Histone Deacetylase (HDACs) enzymes
Hh Hedgehog
Hhat Hedgehog acyltransferase
Hip Hedgehog interacting protein
HPI Hedgehog signalling pathway inhibitor
HPLC High performance liquid chromatography
HRMS High resolution mass spectra
HSP Hedgehog signalling pathway
HT29 Human colorectal carcinoma cell line
Hz Hertz
IC₅₀ Concentration of a drug required to reduce enzyme/protein activity by 50%
Ihh Indian hedgehog
IR Infra-red
J Coupling constant in Hz
LRMS Low resolution mass spectra
LXR Liver X receptor
M Molar
m Multiplet (NMR)
MCF-7 Human breast adenocarcinoma cell line
MeOH Methanol
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>Mega Hertz</td>
</tr>
<tr>
<td>MIA-Paca-2</td>
<td>Human Pancreatic carcinoma cell line</td>
</tr>
<tr>
<td>Min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mL.min(^{-1})</td>
<td>Millilitre per minute</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimole</td>
</tr>
<tr>
<td>mp</td>
<td>Melting point</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>MSX2</td>
<td>Homeobox msh-like</td>
</tr>
<tr>
<td>NANOG</td>
<td>Early embryo specific expression NK-type homeobox protein</td>
</tr>
<tr>
<td>NanoHHI</td>
<td>HPI-1 encapsulated by nanoparticles</td>
</tr>
<tr>
<td>NFkB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NIH 3T3</td>
<td>Mouse embryo fibroblast cell line</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>N-Myc</td>
<td>Myelocytomatosis viral oncogene homolog</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser effect spectroscopy</td>
</tr>
<tr>
<td>PANC1</td>
<td>Human pancreatic carcinoma, epithelial-like cell line</td>
</tr>
<tr>
<td>Pd Tetrakis</td>
<td>Palladium Tetrakis catalyst</td>
</tr>
<tr>
<td>Pd(OH)(_2)/C</td>
<td>Palladium hydroxide/Carbon hydrogenation catalyst</td>
</tr>
<tr>
<td>Pd/C</td>
<td>Palladium/Carbon hydrogenation catalyst</td>
</tr>
<tr>
<td>PdCl(_2)(PPh(_3))(_2)-DVB</td>
<td>Bis-triphenylphosphine CatCart™ catalyst</td>
</tr>
<tr>
<td>PDE4</td>
<td>Phosphodiesterase 4</td>
</tr>
<tr>
<td>PGF</td>
<td>Prostaglandin F</td>
</tr>
<tr>
<td>PI3/ALK/Mtor</td>
<td>Phosphoinositide 3-kinase pathway</td>
</tr>
<tr>
<td>PKA</td>
<td>Protein kinase A</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PTCH1</td>
<td>Hedgehog ligand receptor patched 1</td>
</tr>
<tr>
<td>Ptc(_h)(_1)</td>
<td>Gene of hedgehog ligand receptor patched</td>
</tr>
<tr>
<td>PTM</td>
<td>Post translational modification</td>
</tr>
<tr>
<td>q</td>
<td>Quartet (NMR)</td>
</tr>
<tr>
<td>RAS/RAF/MEK/ERK</td>
<td>Mitogen-activated protein kinases pathway</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>Reverse phase High performance liquid chromatography</td>
</tr>
<tr>
<td>Rt</td>
<td>Room temperature</td>
</tr>
<tr>
<td>Rt</td>
<td>Retention time</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>RTK</td>
<td>Receptor tyrosine kinases</td>
</tr>
<tr>
<td>s</td>
<td>Singlet (NMR)</td>
</tr>
<tr>
<td>SAG</td>
<td>Smoothened agonist</td>
</tr>
<tr>
<td>Shh</td>
<td>Sonic hedgehog</td>
</tr>
<tr>
<td>SHH LIGHT2</td>
<td>Fibroblast reporter cell line</td>
</tr>
<tr>
<td>Smo</td>
<td>Smoothened protein</td>
</tr>
<tr>
<td>SNAIL</td>
<td>Zinc-finger transcription factors</td>
</tr>
<tr>
<td>SUFU</td>
<td>Suppressor of fused protein</td>
</tr>
<tr>
<td>SW480</td>
<td>Human colorectal carcinoma</td>
</tr>
<tr>
<td>t</td>
<td>Triplet (NMR)</td>
</tr>
<tr>
<td>TBAA</td>
<td>Tetrabutylammonium acetate</td>
</tr>
<tr>
<td>TBAF</td>
<td>Tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TCAM-2</td>
<td>Seminoma cell line</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor β</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TM3</td>
<td>Murine testis Leydig cell line</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet light</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>W</td>
<td>Watts</td>
</tr>
<tr>
<td>WIP1</td>
<td>Nuclear Ser/Thr phosphatase</td>
</tr>
<tr>
<td>Wnt</td>
<td>Wingless-related integration site</td>
</tr>
<tr>
<td>X-Cube™</td>
<td>Flow Reactor</td>
</tr>
<tr>
<td>δ</td>
<td>Chemical shift in parts per million</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
</tbody>
</table>