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On the CRLB for Combined Model and Model-Order
Estimation of Stationary Stochastic Processes

Brett Ninness

Abstract—This letter is concerned with quantifying the
Cramér-Rao lower bound for model-based spectral density
estimation in the case of joint model and model-order estimation.
In particular, the results here extend previous work by providing
closed-form frequency domain expressions that, among other
things, highlight the effect of order estimation bias on the total
accuracy of model-based spectral density estimation.

Index Terms—Autoregressive moving-average (ARMA) mod-
eling, Cramér-Rao bound, maximum-likelihood estimation,
spectrum estimation.

I. INTRODUCTION

CONSIDER THE CASE of obtaining observations

(1)

of a wide-sense stationary stochastic process with spectral den-
sity , and on the basis of these forming an estimate of that
spectrum via a model-based approach that involves the interme-
diate estimation of a parameter vector .

A fundamental measure of the nature of this estimation
problem is provided by the Fisher Information matrix

(2)

and the associated Cramér–Rao lower bound (CRLB) on es-
timate variability that arises as the inverse of this matrix. In
(2), is the likelihood of the observed data conditional
on , and denotes expectation with respect to

where is the true parameter vector that character-
izes the process .

An interesting recent contribution [1] recognizes the fact that
if the order true parameter vector is unknown, then no
longer quantifies the CRLB for the spectral density estimation
problem. That work then establishes the following key result.

Theorem 1.1: For the case of a true underlying process of
order , a maximal considered model order , a scheme that
derives a model-order estimate that satisfies (for )

(3)
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and a situation in which for all , then the
CRLB matrix involved with joint estimation of order
and model parameterization is given by

(4)

where each is defined via (2) as

(5)

Proof: See [1].
Although the proof presented in [1] does not depend on as-

sumptions of the true process type, the assumption of
for is only satisfied by processes of AR or MA type, and
hence [1] concentrates on models of that type. In particular, that
work focuses on evaluating the above main result by virtue of
its implied CRLB for the estimated spectral density ,
viz. [1, eq. (16)]

CRLB (6)

The right-hand side of (6) is then numerically evaluated in [1]
over several different simulation examples in order to illustrate
the significance of the parameter space result of Theorem 1.1.

The contribution of this letter is to extend the work of [1] by
establishing a closed-form expression for the right-hand side of
(6) which provides a theoretical basis to explain certain phe-
nomena observed empirically in [1], such as the effects on the
variance of according to the distance of AR process
poles (MA process zeros) to the origin, and the variance in-
creasing effects of order estimation bias.

II. MAIN RESULTS

To begin with, this letter is concerned with situations in which
the observed data is a realization of an order au-
toregressive (AR) or moving average (MA) process. That is,
with being an th-order polynomial in the forward
shift operator , and with being a zero-mean independently
and identically distributed (i.i.d.) process, either

(7)

for the AR case or, in the MA case

(8)
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For these two scenarios of an observed realization of data
points, we will denote the asymptotic normalized CRLB for a
model of fixed order as , i.e.,

CRLB

Var (9)

The associated CRLB for the joint estimation of normalized
spectral estimate and model-order estimate

will be denoted by . The first main result of this letter is
that can be quantified in closed form as follows.

Theorem 2.1: Under the assumptions of Theorem 1.1 and
with the definition of the zeros via

(10)

then for either of the AR or MA cases

(11)

where the following expressions hold

(12)

(13)

with

(14)

In (13) and (14), it has been assumed (without loss of generality)
that the zeros defined by (10) are arranged so that the first

of them are purely real valued, and the remaining then
occur in complex conjugate pairs.

Proof: First, note that according to the results of [2, Cor.
3.2], then for

Re

Re (15)

where the sum in the last term should be taken as zero for the
case . Furthermore, according to (6) and the results of
Theorem 1.1

(16)

Substitution of (15) in (16) and using the facts that

(17)

then completes the proof.
There are several important conclusions to be drawn from this

result. To elucidate them, first note that the quantification (11) for
jointmodelandmodel-orderestimationCRLB isdominated
bythefirsttwoterms.Thisisbecausethefinaltwotermsarethereal
part of the sum of quantities which themselves have both positive
and negative real parts, and they therefore tend to remain small
relative to the preceding two terms of (11) which being the sum of
strictlypositivequantities,aregenerically larger.

With this in mind, further note that the component
Re is the CRLB for the spectral density estimation for
known and true model order and is independent of any
model-orderselectionruleused.Theadditional com-
ponentof(11)isthebiasofthemodel-orderselectionruleusedand
is independentof thenatureoftheassociatedspectraldensity.

Thenewquantification(11), therefore,highlights thatorderes-
timation bias produces a constant additive offset on
the CRLB relative to the known order case. The phenomenon was
observedempirically in[1],butwasnotbeexplainedorquantified
there.

Furthermore, with the exception of the very last term of (11)
(which has just been argued to be negligible in comparison to ear-
lier terms), Theorem 2.1 indicates that there is a decoupled nature
to the contribution of order estimation bias and underyling true
spectraldensityontheCRLBofjointdensityandorderestimation.

In addition, the closed-form expression (11) for the CRLB
highlights that because all the denominators in (12) and (13),
are small when is close to any of the zeros , then the
relative estimation error is likely to be larger at those frequencies
near the zeros of . Furthermore, this relative estimation
error is likely to be larger when those poles or zeros are very
close to the unit circle, then when they are not.

To explore this even more closely, consider for the moment
the simplest case of all the poles and zeros being real
valued, in which case use of (12) and (13) permits (11), with
the last term neglected to be evaluated as

Var E

(18)

where the notation has been used. Simple
geometry then indicates that poles and zeros near the origin lead
to small and smooth variations in the subtended angle , and
hence via (18) smooth variations in spectral estimate variability
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with changing , and vice-versa for poles and zeros near the
boundary of the unit circle.

Again, this provides a theoretical background for explaining
phenomena that were first observed empirically in [1], such as
the fact that the variance increasing effect of combined model
and model-order estimation is “more pronounced when the poles
are close to the origin.” According to the results of this letter and
the above discussion, this is clearly because poles away from the
origin produce higher magnitude peaks in the first component
of (11) which tend to swamp the constant offset produced by
the second component of (11). This reasoning is also consistent
with the figures provided in [1].

The additional effect of the last term in (11) is one which,
since , is dominated by the nature of the sinc func-
tion term which adds an “oscillatory” com-
ponent to the CRLB, of frequency , i.e., faster os-
cillatory variation as increases beyond .

Finally, returning again to (11) which applies for any real or
complex value of the , it can be used to establish the fol-
lowing final result of this section

Corollary 2.1: Under the same conditions imposed in The-
orem 2.1

Var (19)

Proof: First, by the formulation (12)

(20)

which can be simply established by rewriting the integral as
a contour one using the substitution and then using
Cauchy’s Residue Theorem [3]. Furthermore, using the substi-
tution (for ease of notation, redefine as taking
argument rather that )

(21)

where the latter equality to zero holds according to Cauchy’s
Integral Theorem since by the formulation (13),
is analytic within the unit disk . Finally, via a similar
argument and for any (and again for ease of notation,
redefine as taking argument rather that )

(22)
again since the integrand in the contour integral is, by the for-
mulation (12), analytic within the unit disk. Substitution of (20)
–(22) into the integral with respect to of (11) then completes
the proof after recognising that the rightmost term in (11) can
be written as the rightmost summation term in (15).

This surprisingly simple relation between the average rela-
tive estimation error over all frequencies and the expected value
of the order estimate illustrates a “waterbed effect.” Specif-
ically, although as just discussed, the expression (11) indicates
increased relative error near zeros of , with increased
effect according to distance from the unit circle, the quantifi-

cation (19) establishes that these effects must be balanced by
a commensurate decrease in relative error at other frequencies,
since the average (over frequency) relative error depends only
on the expected value of the order estimate.

III. ARMA EXTENSIONS

These results can be extended to the ARMA case in which
the model structure is

(23)

where now both and are th-order polyno-
mials in the forward shift operator , and they jointly require a
vector of size to parameterize them.

However, an initial difficulty is that the information matrix
in this ARMA situation becomes singular for [4], [5]. In
order to circumvent this, the achieved variance of a particular,
but widely used, estimation scheme can be considered, instead
of the CRLB underbounding the variance of all (unbiased) es-
timation schemes. In particular, consider the “regularized least
squares” estimation scheme

(24)

where is the error associated with the mean square op-
timal one step ahead predictor associated with the
model parameterized by , viz.

(25)

In (24), the second term in the definition of , with
a user chosen parameter, is a so-called “regularization” term [6]
that ensures that is uniquely defined. In this case, let us de-
fine the asymptotic in normalized variance of the associated

th-order ARMA spectral density estimate as

Var (26)

The variance associated with joint density estimation and
model-order estimation will be denoted by , and may be
quantified by the following final main result.

Theorem 3.1: Under the assumptions of Theorem 2.1, and
with the zeros being defined according to

(27)
with the left-to-right ordering of the zeros being preserved on
both sides of (27), and where is an th-order polyno-
mial that contains the common zeros of and ,
i.e.,

(28)

then

(29)
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(a)

(b)

Fig. 1. Variability of � (e ; � ). The solid line is the true variability, as
estimated via averaging over Monte Carlo trial, the dashed line exactly matching
it is the new quantification (11) of this letter. The bottom curves corresponds to
n = n , and the ones above to n > n .

Proof: In a manner similar to the proof of Theorem 2.1,
but this time using the results of [2, Corollary 3.2], for

Re (30)

The proof is then completed in the same manner as that of The-
orem 2.1.

It is important to note that the zeros
of are not uniquely defined by

the underlying ARMA process , but instead are uniquely
defined by the regularized estimation criterion (24), according
to the definition .

To expand on this, clearly there are degrees of freedom
in which are constrained so that is the
associated th-order spectral factor for the ARMA process.
However, this still leaves degrees of freedom available.
Indeed, it is this freedom that implies a singular information ma-
trix for , and necessitates the use of the regularized cri-

terion (24) in order for , and hence its variance, to be asymp-
totically (in ) uniquely defined.

If these spare degrees of freedom are used to constrain the
excess zeros of to all lie at the origin, then the last term in
(29) is identical to the last term in (11) and the results for the
asymptotic variance of AR, MA and regularized ARMA cases
are identical.

However, Theorem 3.1 highlights the further new result that
the choice of where the regularized zeros lie has an effect on the
achieved asymptotic variability of the spectral density estimate

according to the last term of (30). Additionally, The-
orem 3.1 also allows the new insights into AR and MA spectral
estimate variability that are provided by the results of Theorem
1.1 (as just discussed) to also be applied to the ARMA case.

IV. SIMULATION EXAMPLES

In order to illustrate the results just presented, this section
presents a brief simulation example by considering the same
scenario as considered in [1, Fig. 1] where a Gaussian second-
order AR process process with zeros

(31)

is considered. This situation is analyzed here by estimating the
true variability of (which under Gaussian assump-
tions achieves the CRLB) via sample average over 1000 dif-
ferent data realizations, each of length samples.

This is done for two cases of , and
with the resultant CRLB estimates being shown as the solid lines
in Fig. 1. Also shown there is the theoretical quantification of the
variability as given by (11).

Fig. 1(a) illustrates the case of the zeros being as in (31). Note
that, as explained in the discussion after Theorem 1.1, the effect
of biased estimation of order is to add a constant offset to the
CRLB equal to the bias , plus to add an oscillatory
variation to the CRLB with rate of oscillation again proportional
to the bias.

To complete the simulation illustration, Fig. 1(b) shows the
case considered in [1, Fig. 2] in which

(32)

are chosen for the zeros of the AR process. Again, as predicted
by Theorem 1.1, the closeness of the zeros to the unit circle lead
to large peaks in the CRLB, which at the peaking frequency
swamp the effects of order estimation bias.
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