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reverted SAP+ CD8+ T cells coupled with the presence of more 
than one reversion in some patients suggest that the initial 
reversion event occurred before TCR rearrangement in de-
veloping thymocytes and that the pressure provided by EBV 

lymphoid cells other than CD8+ T cells in XLP, but in the 
absence of any selective pressure, these cells do not undergo 
sufficient expansion to render them detectable by the assays 
used here. Our findings of a polyclonal TCR repertoire in 

Figure 5.  Reverted cells in XLP are functional. (A and B) CD8+ T cells from EBV-seropositive (EBV+) and -seronegative (EBV) normal donors (A) and 
XLP2 (B) were cultured with autologous LCLs at the indicated effector/target (T cell/LCL) ratio or with staphylococcal enterotoxin B (A: normal donors) or 
anti-CD3, anti-CD28, and anti-CD2 mAb (B: XLP; pan-T cell stimulation); CD137 expression was determined after 48 h. (C) EBV-specific CD8+ T cell lines 
were generated from XLP2 by repeated stimulation with peptide-pulsed autologous LCLs as detailed in Materials and methods. The frequency of SAP+ 
cells was determined before and after 2 wk of in vitro expansion. (D) EBV-specific CD8+ T cell lines, containing both SAP and SAP+ cells (as shown in C) 
were tested for their ability to degranulate, as measured by CD107a up-regulation, in response to antigen presented on autologous LCLs. The values in A, 
B, and D represent the proportion of cells in each indicated quadrant. (E and F) After 4 wk in culture, EBV-specific CD8+ T cell lines from XLP2 were tested 
for their ability to kill autologous (E) or HLA-matched (F) LCLs presenting endogenous antigen (open bars) or after pulsing with specific peptides (VEITPYKPTW 
and EENLLDFVRF; closed bars). Independent cell lines were established from XLP2 for the experiments presented in C–F.
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stained for surface markers and then fixed with 2% paraformaldehyde, per-
meabilized with 0.5% saponin, and then incubated with either Alexa Fluor 
647 (Invitrogen)–conjugated isotype control or Alexa Fluor 647 anti-SAP 
mAb (clone 1C9; Abnova). Cells were washed and resuspended in PBS con-
taining 1% fetal calf serum and analyzed by flow cytometry.

T cell stimulation. The capacity of SAP+ and SAP CD8+ T cells to re-
spond to EBV peptides was measured using MHC class I restricted synthetic 
peptides. 1–2 × 106 purified CD8+ T cells were labeled with CFSE and then 
stimulated in vitro with autologous EBV-LCLs pulsed with irrelevant (nega-
tive control) or specific peptides (1 µg/ml) or with T cell activation and  
expansion (TAE) beads (anti-CD3/CD28/CD2 mAb beads; Miltenyi Bio-
tech; positive control) for 5 d. The capacity to respond to cognate peptides 
was analyzed by determining the proliferation history, based on dilution of 
CFSE, of the CD8+ T cells after different days of culture. EBV peptides used 
in CFSE experiments were HLA-B*4402–restricted VEITPYKPTW (latent 
protein EBNA 3B), EENLLDFVRF (latent protein EBNA 3C), and HLA-
B*5801–restricted VSFIEFVGW (EBNA 3B) for XLP2 and VEITPYKPTW, 
EENLLDFVRF, and HLA-B*2705–restricted KRPPIFIRRL (latent protein 
EBNA 3A) for XLP3. Control cells were stimulated with VEITPYKPTW 
and EENLLDFVRF peptides. Alternatively, in some experiments, CD8+  
T cells were tested for their ability to degranulate in the presence of peptide-
pulsed autologous EBV-LCLs by staining for CD107a (Betts et al., 2003). 
The capacity of CD8+ T cells to respond to EBV-LCLs was also examined  
ex vivo by assessing expression of CD137 (eBioscience; Wehler et al., 2008).  
Purified CD8+ T cells were cultured with either EBV-LCLs at different 
effector/target ratios or with TAE beads or Staphylococcal enterotoxin B. 
After 48 h of stimulation, CD137 expression by SAP and SAP+ CD8+  
T cells was analyzed by immunofluorescence and flow cytometry.

T cell lines and cytotoxicity assay. To generate virus-specific T cell lines, 
CD8+ T cells were isolated from PBMCs and stimulated repeatedly over  
4–8 wk with EBV peptide-pulsed autologous EBV-LCLs. Peptides used in 
generating EBV-specific lines were HLA-B*4402–restricted VEITPYKPTW 
and EENLLDFVRV. The ability of CD8+ T cell lines to respond to EBV 
peptides was measured by staining for the degranulation marker CD107a  
after stimulation with 1 µg/ml of peptide-pulsed LCLs (Betts et al., 2003). 
Where cytotoxicity was measured, autologous LCLs and HLA-matched con-
trol LCLs were sensitized with cognate peptide (HLA-B*4402–restricted 
EBV epitopes VEITPYKPTW and EENLLDFVRV) at concentrations of  
1 µg/ml while loading with sodium 51chromate. After washing, T cells were 
incubated at different APC/T cell ratios and incubated for 5 h in standard 
cytotoxicity assay.

V repertoire staining of cells. V repertoire staining was performed  
using the IOTest Beta Mark kit (Beckman Coulter). The protocol was 
slightly modified from the product manual because of the nature of the sam-
ples involved. Staining of PBMCs was performed as described in Flow cyto-
metric analysis. Each tube contained mAbs to three different V receptors: 
one conjugated to FITC, another conjugated to PE, and a third conjugated 
to both FITC and PE.

Measurement of EBV load. Quantitative PCR analysis was performed to 
estimate viral genome levels as described previously (Junying et al., 2003). 
106 B cells were sort purified from PBMCs, and genomic DNA was  
extracted using the UltraClean Tissue and Cells DNA isolation kit (MO 
BIO) in accordance with the manufacturer’s protocol.
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resulted in selective expansion of EBV-specific CD8+, but not 
CD4+, T cells, which then differentiated into TEM cells. Alter-
natively, because the reverted cells were largely confined to 
the CD8+ TEM subset, reversion may have occurred exclu-
sively in naive CD8+ T cells and only became apparent once 
these cells became TEM cells after EBV infection and expan-
sion. Irrespective of the mechanism, our data demonstrate that 
the ability of revertant SAP+ CD8+ T cells to respond to B cells, 
the primary reservoir of EBV, enables them to undergo pref-
erential expansion and acquisition of effector function, which 
is sufficient to contain the virus and prevent overwhelming 
infection. This infers that lack of SAP in CD8+ T cells, but not 
other cells such as NK and NKT cells, is the primary factor 
underlying susceptibility to EBV-induced disease in XLP. 
Importantly, somatic reversion is unlikely to improve impaired 
humoral immunity in XLP, as this defect is intrinsic to SAP-
deficient CD4+ T cells (Ma et al., 2005, 2007; Nichols et al., 
2005b; Schwartzberg et al., 2009; Cannons et al., 2011), 
which did not exhibit mosaicism. Indeed, despite detection of 
reversion and evidence of viral control (Chaganti et al., 2008), 
some of the XLP patients studied continued to require Ig 
replacement therapy (Table 1). Based on our findings, further 
studies that examine the relationship between mosaicism and 
clinical outcome are warranted. Lastly, these observations have 
implications for gene therapy, inasmuch that restoring SAP in 
only a small subset of CD8+ T cells may be sufficient to im-
prove anti-EBV immunity in XLP patients.

MATERIALS AND METHODS
XLP patients. Blood samples collected from 12 XLP patients (11 periph-
eral blood and 1 cord blood) from 10 different kindreds were used in this 
study. Mononuclear cells were isolated using standard procedure and used 
either fresh or cryopreserved in liquid nitrogen. Genomic DNA was isolated 
from PBMCs or purified sort-purified subsets of CD8+ T cells and used for 
sequence analysis. In some patients, RNA was isolated and used to synthesize 
cDNA for sequence analysis. The primers used for amplification of the four 
exons of SH2D1A are as follows: Exon 1 sense, 5-CAACATCCTGTTGTTG
GGG-3; Exon 1 antisense, 5-CCAGGGAATGAAATCCCC-3; Exon 2 
sense, 5-GCAATGACACCATATACG-3; Exon 2 antisense, 5-GAAC
AATTTTGGATTGGAGC-3; Exon 3 sense, 5-GTAAGCTCTTCTG-
GAATG-3; Exon 3 antisense, 5-CATCTACTTTCTCACTGC-3; Exon  
4 sense, 5-CTGTGTTGTGTCATTGTG-3; and Exon 4 antisense, 5-GCT
TCCATTACAGGACTAC-3. Details of the mutations and the reverted 
sequences along with other patient information are presented in Table 1. 
All participants gave written informed consent, and the experiments were 
approved by the Human Research Ethic committees of the Sydney South 
West Area Health Service (Royal Prince Alfred and Concord Zones) and St. 
Vincent’s Hospital (Darlinghurst, Sydney).

Flow cytometric analysis. PBMCs were stained with fluorochrome- 
conjugated mAbs specific for cell surface receptors. The following mAbs were 
used to identify different lymphocyte populations: anti-CD3, CD4, CD8  
(T cells), CD56 (NK cells), and CD20 (B cells; BD). To identify naive and 
memory T cells, mAbs against CCR7 (R&D Systems) and CD45RA (BD; 
Sallusto et al., 1999) were used. For degranulation assays, mAb against CD107a 
(BD) was used as previously described (Betts et al., 2003; Palendira et al., 2011). 
Stained cells were then analyzed on either a FACSCanto I or II flow cytome-
ter (BD), and the data were processed using FlowJo software (Tree Star).

Detection of SAP by intracellular staining. Expression of SAP was  
determined as previously described (Palendira et al., 2011). Cells were first 
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