Ageing of the Somatic Motor Nervous System:
A Nuclear and Mitochondrial Genome Perspective.

Gemma Marie Parkinson
B. Biomed. Sci. (Hons)

This thesis is submitted for the degree:
Doctor of Philosophy (Medical Biochemistry)

September, 2015
Revised: June 2016
Statement of Originality:

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Signed:

Gemma M Parkinson

30th of June, 2016
Copyright Statement:

I hereby declare that all copyright provisions and requirements have been met for all work contained within this thesis.

Signed:

Gemma M Parkinson

30th of June, 2016
Statement of Authorship:

I hereby certify that the work embodied in this thesis contains published and submitted papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications.

Signed,

Gemma M Parkinson

30th of June, 2016
Statement of Authorship - Supervisor:

By signing below I confirm that Gemma Marie Parkinson contributed to the following:

- Study design and development (in collaboration with DW Smith)
- Data acquisition (solely responsible)
- Data analysis (primarily responsible)
- Interpretation of results (in collaboration with DW Smith)
- Writing of the final manuscript for submission and publication (primarily responsible, but in collaboration with DW Smith and review by CV Dayas).

for each of the following submitted/published journal articles:

Title: Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat.

Title: Age-related gene expression changes in substantia nigra dopamine neurons of the rat.

Title: Perturbed cholesterol homeostasis in ageing spinal cord.

Authors: Gemma M Parkinson, Christopher V Dayas, Doug W Smith

Submitted to: Neurobiology of Ageing

Date: August 2015

Signed: Date: 29th September 2015

Dr Doug W Smith
Publications:

Chapter 1:

Title: Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat.

Authors: Gemma M Parkinson, Christopher V Dayas, Doug W Smith

DOI: CAS-EPUB-64780

Chapter 2:

Title: Age-related gene expression changes in substantia nigra dopamine neurons of the rat.

Authors: Gemma M Parkinson, Christopher V Dayas, Doug W Smith

DOI: 10.1016/j.mad.2015.06.002

Chapter 4:

Title: Perturbed cholesterol homeostasis in ageing spinal cord.

Authors: Gemma M Parkinson, Christopher V Dayas, Doug W Smith

Submitted to: Neurobiology of Ageing

Date: August 2015

DOI: http://dx.doi.org/10.1016/j.neurobiolaging.2016.05.017
Acknowledgments

Thank-you to all who have helped me during my PhD studies and in the writing of my PhD thesis.

In particular, I wish to thank Dr Doug Smith, my primary supervisor, for inspiration, guidance, patience, and many, many hours reviewing my work and helping me to polish my scientific reasoning, experimental approach and writing.

Thank-you to my co-supervisor, Dr Christopher Dayas, and the members of the Neurobiology of Ageing Laboratory, University of Newcastle, for consistent support throughout my PhD studies.

Finally, thanks to my family, especially my husband, Chris, and my parents and siblings for their consistent support, encouragement and interest in my research.
Contents
Statement of Originality: ... 2
Copyright Statement: .. 3
Statement of Authorship: ... 4
Publications: ... 6
Acknowledgments: .. 7
Figures and Tables .. 11
Abbreviations ... 13
Abstract ... 16
I.I General Introduction ... 17
 I.I.I.I The Motor Cortex: .. 22
 I.I.I.IV The Spinal Cord: ... 26
 I.I.II Animal Studies of Ageing: .. 27
I.II Hypothesis and Aims .. 28
Chapter 1 .. 31
 1.i Abstract .. 33
 1.ii Keywords ... 33
 1.1 Introduction .. 34
 1.2 Materials and Methods ... 36
 1.2.1 Animals and tissue preparation: .. 36
 1.2.2 SN DA neuron immunolabelling: .. 36
 1.2.3 Laser microdissection of SN DA neurons: .. 36
 1.2.4 Quantitation of relative abundance of mitochondrial genes by qPCR: 37
 1.2.5 Calculations and statistics: ... 38
 1.3 Results ... 38
 1.3.1 Laser microdissection of SN DA neurons: .. 38
 1.3.2 Age-related increase in mtDNA deletion abundance in SN DA neurons: 39
 1.4 Discussion ... 40
 1.5 Conclusions ... 44
Chapter 2 .. 45
 2.i Abstract .. 47
 2.ii Keywords ... 47
4.2 Materials and Methods .. 100
 4.2.1 Animals and tissue preparation .. 100
 4.2.2 Spinal cord sectioning and RNA extraction ... 101
 4.2.3 Microarray analysis of mRNA .. 101
 4.2.4 qPCR confirmation of mRNA expression changes .. 102
 4.2.5 Immunofluorescence labelling of spinal cord sections .. 102
 4.2.6 Western blotting of selected proteins .. 103
 3.2.7 Cholesterol quantification in cervical spinal cord .. 103
 4.2.8 Data analysis .. 105
 4.2.8.1 Microarray data analysis .. 105
 4.2.8.2 qPCR gene expression analysis ... 105
 4.2.8.3 Western blot protein quantification analysis ... 105
 4.2.8.4 Cholesterol quantification analysis ... 105
 4.3 Results .. 105
 4.3.1 Age-associated changes in mRNA expression in cervical spinal cord 105
 4.3.1.1 Microarray results ... 105
 4.3.1.2 Functional analysis of differentially expressed genes .. 106
 4.3.2 Perturbed cholesterol homeostasis in ageing rat cervical spinal cord 107
 4.3.2.1 Altered cholesterol gene and protein expression in cervical spinal cord 107
 4.3.2.2 Alteration in cholesterol associated genes is pronounced in white matter of cervical spinal cord with age ... 110
 4.3.2.3 Altered cholesterol levels in ageing spinal cord .. 111
 4.3.2.4 Altered expression of myelin-associated genes in ageing spinal cord 112
 4.3.3 Increased inflammatory-related gene and protein expression in ageing spinal cord . .. 113
 4.4 Discussion ... 116
I.III General Discussion and Conclusions .. 127
I.V Appendix 1 .. 136
I.VI Bibliography .. 141
Figures and Tables

Introduction

Figure I.1: Schematic of the somatic motor nervous system ... 19

Chapter 1

Table 1.1 Mitochondrial gene primer sequences for qPCR .. 36
Figure 1.1: Ventral midbrain section showing Th + SN DA neurons 37
Figure 1.2: Relative abundance of mitochondrial genes in young and old rat SN DA neurons .. 39

Chapter 2

Table 2.1: Primer sequences used to amplify selected genes by qPCR 50
Figure 2.1: Ventral midbrain section showing Th-positive, Hoechst-positive SN DA neurons ... 53
Figure 2.2: Assessment of integrity of mRNA extracted from laser microdissected SN DA neurons .. 54
Figure 2.3: Expression of dopamine related genes in young and old rats 55
Figure 2.4: Expression of dopamine-associated transcription factors in SN DA laser microdissected neurons .. 57
Figure 2.5: Relationship between Nurr1 and Gch1 mRNA expression 57
Figure 2.6: Expression of neurotrophic factors and their receptors in young and old rat SN DA neurons (A) and striatum (B) ... 58

Chapter 3

Table 3.1: Forward and reverse primer sequences for qPCR confirmation of microarray results ... 76
Table 3.2: Enriched biological processes represented by DEGs from DLS, MC and SC ... 81
Table 3.3: Significantly enriched pathways over-represented by DEGs in the DLS, MC and SC...81
Table 3.4: Functional classifications and hub genes in selected consensus modules.....84
Figure 3.1: Representative schematic of regional tissue dissection.............................73
Figure 3.2: DEGS in the MC, DLS and SC with age...77
Figure 3.3: DEGs common to each brain region with hierarchical clustering analysis of normalised mRNA expression for each gene in each region..78
Figure 3.4: Consensus module eigengenes (consMEs) significantly correlated with age in DLS, MC and SC regions...83
Figure 3.5: qPCR confirmation of gene expression changes in DLS, MC and SC.......86

Chapter 4

Table 4.1: Primer sequences for qPCR...103
Table 4.2: Significantly enriched biological pathways as determined by DAVID.....107
Figure 4.1: Eight gene expression patterns in ageing cervical spinal cords were identified...105
Figure 4.2: Genes in the cholesterol synthesis pathway are down regulated with age in rat spinal cord..108
Figure 4.3: Perturbed expression of cholesterol homeostasis genes in ageing cervical spinal cord...109
Figure 4.4: Cholesterol-related gene expression is significantly altered in spinal cord grey and white matter regions with age...111
Figure 4.5: Cholesterol content in ageing spinal cord. A) Increased total cholesterol in ageing spinal cord..112
Figure 4.6: Myelin associated gene and protein expression in ageing spinal cord.....113
Figure 4.7: Increased microglia and astrocyte markers in whole cervical spinal cord and spinal cord regions with age...114
Figure 4.8: Immunoflorescent labelling of young and old cervical spinal cords......115
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>12S ribosomal RNA</td>
<td>12s</td>
</tr>
<tr>
<td>1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine</td>
<td>MPTP</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>AS</td>
</tr>
<tr>
<td>Amyotrophic lateral sclerosis</td>
<td>ALS</td>
</tr>
<tr>
<td>Analysis of variance</td>
<td>ANOVA</td>
</tr>
<tr>
<td>Bicinchoninic acid assay</td>
<td>BCA</td>
</tr>
<tr>
<td>Brain-derived neurotrophic factor</td>
<td>BDNF</td>
</tr>
<tr>
<td>Brown-Norway</td>
<td>BN</td>
</tr>
<tr>
<td>Carrier RNA</td>
<td>cRNA</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>CNS</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>CB</td>
</tr>
<tr>
<td>Consensus analysis</td>
<td>ConsME</td>
</tr>
<tr>
<td>Cycle threshold</td>
<td>Ct</td>
</tr>
<tr>
<td>Cytochrome B</td>
<td>CYTB</td>
</tr>
<tr>
<td>Database for Annotation, Visualisation and Integrated Discovery</td>
<td>DAVID</td>
</tr>
<tr>
<td>Diethylypyrocarbonate</td>
<td>DEPC</td>
</tr>
<tr>
<td>Differentially expressed genes</td>
<td>DEGs</td>
</tr>
<tr>
<td>Diffusion tensor imaging</td>
<td>DTI</td>
</tr>
<tr>
<td>Dopamine</td>
<td>DA</td>
</tr>
<tr>
<td>Dopa-responsive dystonia</td>
<td>DRD</td>
</tr>
<tr>
<td>Dorso-lateral striatum</td>
<td>DLS</td>
</tr>
<tr>
<td>False discovery rate</td>
<td>FDR</td>
</tr>
<tr>
<td>Fischer 344</td>
<td>F344</td>
</tr>
<tr>
<td>Functional MRI</td>
<td>fMRI</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Gene significance</td>
<td>GS</td>
</tr>
<tr>
<td>Glial cell-derived neurotrophic factor</td>
<td>GDNF</td>
</tr>
<tr>
<td>Huntington’s disease</td>
<td>HD</td>
</tr>
<tr>
<td>Liver X receptor</td>
<td>LXR</td>
</tr>
<tr>
<td>Locus Coeruleus</td>
<td>LC</td>
</tr>
<tr>
<td>Median spiny neurons</td>
<td>MSNs</td>
</tr>
<tr>
<td>Messenger RNA</td>
<td>mRNA</td>
</tr>
<tr>
<td>Middle</td>
<td>M</td>
</tr>
<tr>
<td>Mitochondrial DNA</td>
<td>mtDNA</td>
</tr>
<tr>
<td>Module membership</td>
<td>kME</td>
</tr>
<tr>
<td>Motor cortex</td>
<td>MC</td>
</tr>
<tr>
<td>Multiple Sclerosis</td>
<td>MS</td>
</tr>
<tr>
<td>NADH dehydrogenase subunit 1</td>
<td>ND1</td>
</tr>
<tr>
<td>NADH dehydrogenase subunit 4</td>
<td>ND4</td>
</tr>
<tr>
<td>Neuromuscular junction</td>
<td>NMJ</td>
</tr>
<tr>
<td>Old</td>
<td>O</td>
</tr>
<tr>
<td>Oxidative phosphorylation</td>
<td>OXPHOS</td>
</tr>
<tr>
<td>Paraformaldehyde</td>
<td>PFA</td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td>PD</td>
</tr>
<tr>
<td>Phosphate buffered saline</td>
<td>PBS</td>
</tr>
<tr>
<td>Polyethylene glycol</td>
<td>PEG</td>
</tr>
<tr>
<td>Polymerase gamma</td>
<td>POLG</td>
</tr>
<tr>
<td>Pseudo glyceraldehyde 3-phosphate dehydrogenase</td>
<td>psGAPDH</td>
</tr>
<tr>
<td>Quantitative PCR</td>
<td>qPCR</td>
</tr>
<tr>
<td>Radioimmunoprecipitation assay buffer</td>
<td>RIPA</td>
</tr>
<tr>
<td>Reactive nitrogen species</td>
<td>RNS</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Reactive oxygen species</td>
<td>ROS</td>
</tr>
<tr>
<td>Robust multi-array average</td>
<td>RMA</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>NaCl</td>
</tr>
<tr>
<td>Sodium dodecyl sulfate</td>
<td>SDS</td>
</tr>
<tr>
<td>Somatic motor nervous system</td>
<td>SMNS</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>SC</td>
</tr>
<tr>
<td>Standard error of the mean</td>
<td>SEM</td>
</tr>
<tr>
<td>Substantia nigra</td>
<td>SN</td>
</tr>
<tr>
<td>Superoxide dismutase</td>
<td>SOD</td>
</tr>
<tr>
<td>Tyrosine hydroxylase</td>
<td>Th or TH</td>
</tr>
<tr>
<td>Ventral tegmental area</td>
<td>VTA</td>
</tr>
<tr>
<td>Web-based Gene Set Analysis Toolkit</td>
<td>WebGestalt</td>
</tr>
<tr>
<td>Weighted gene co-expression network analysis</td>
<td>WGCNA</td>
</tr>
<tr>
<td>Young</td>
<td>Y</td>
</tr>
</tbody>
</table>
Abstract

The somatic motor nervous system (SMNS) contributes to all aspects of motor function. Ageing affects most, if not all, human and animal biological systems, including the SMNS, and contributes to the decline in the quality of life of the elderly. Some of the proposed mechanisms of ageing in the brain include mitochondrial dysfunction as a result of mitochondrial DNA (mtDNA) deletion accumulation, aberrant inflammation and synaptic dysfunction. However, the mechanisms underlying the functional changes in the SMNS are not well understood. Therefore, a number of SMNS regions including the motor cortices, striatum and substantia nigra dopaminergic (SN DA) neurons, as well as the spinal cord, were examined in young and old rats to identify molecular correlates of ageing. In the SN DA neurons, an increase in mtDNA deletions was observed with age, although not to the extent reported in humans. Furthermore, there was reduced expression of genes involved in regulating dopaminergic phenotype and neuron survival; however there was no change in expression of genes associated with dopamine production and transport such as Th and Dat, unlike in humans. Both the mtDNA deletion and gene expression results suggest that rat SN DA neurons are less susceptible to age related changes than their human counterparts and thus may provide insight into potential ageing resistance mechanisms. Genomic analysis in the other SMNS regions (mentioned above) consistently revealed up-regulation of inflammatory processes including increased expression of genes in the complement and coagulation pathways with age. Furthermore, there was reduced expression of genes associated with axon growth and synaptic transmission in each region. Cholesterol and lipid synthesis pathways were also affected, particularly in the spinal cord. In depth characterisation of the spinal cord changes identified perturbed cholesterol homeostasis at the gene, protein and cholesterol species level, as well as increased inflammatory markers in the absence of gross myelin protein loss. Together, the results of these studies support a role for inflammation, synaptic dysfunction and altered white matter integrity in ageing of the SMNS.