A validity framework theory and fatigue damage function for an S–N plane

Hoda Eskandari
BSc, Mechanical Engineering-Solid Design

Faculty of Engineering and Built Environment
Submitted for the degree of
Master of Philosophy (Mechanical Engineering)

December 2015
Statement of originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968. **Unless an Embargo has been approved for a determined period.

Signed ___________________

Hoda Eskandari
Statement of authorship

I hereby certify that the work embodied in this thesis contains a published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

Signed ________________________

Hoda Eskandari
Acknowledgments

I gratefully acknowledge the intellectual contributions of Dr Ho Sung Kim who has guided me in various ways to find the scope and directions for this research project, to be inspired for creativity and wisdom, to learn the research methods, and to conduct the study. Dr Kim has provided me with insight into solutions to historical problems in the area of S–N fatigue research. I have been lucky to have Dr Kim as my supervisor, as he has cared so much about my work, and responded promptly to my questions and demands. The intellectual property generated from this thesis will be shared between me and Dr Kim for publications in the future.

I would like to thank all the academics around me who helped me achieve my targets.

I must express my sincere gratitude to Hossein, my husband, for his support and encouragement in the course of my research.

Last but not the least; I would like to thank my mother, father and brother for supporting me spiritually throughout my life. I am so blessed to have them all in my life.
Table of contents

Statement of originality ... iii
Statement of authorship ... v
Acknowledgments ... vii
Table of contents .. ix
Table list ... x
List of figures .. xi
Abstract ... xiv
Nomenclature .. xv

1. Introduction .. 1

2. Fatigue loading conditions and different stages for levels of difficulty in life predictions .. 2

3. Scope of the thesis ... 5

4. Axioms for fatigue damage quantification and compatibility 7

5. A theory for validity framework of fatigue damage and damage function 10
 5.1 Boundary conditions and damage at half cycle ... 11
 5.2 Requirement of reference damage equation for points on an S–N curve 13
 5.3 A damage equation at failure, boundary conditions at $N = 0.5$, and relativity ... 15
 5.4 Damage characteristics on an S–N plane and requirements for compatibility 16
 5.5 A damage function and validation .. 20
 5.6 Theoretical predictions and experimental results .. 24
 5.7 Validation and calculation ... 26
 5.8 Prediction results and discussion .. 29

6. An evaluative review of damage models for fatigue life predictions 31
 6.1 Fatigue damage ... 31
 6.2 Fatigue life predictions involving residual strength ... 40

7. Conclusion ... 50

Publications arising from this thesis .. 51
References ... 52
Index .. 57
Table list

Table 1- Two stress level tests in sequence for comparison with theoretical predictions
 23
List of figures

Figure 1- Schematic data points and an S–N curve as a function of number of cycles......4
Figure 2- Different stages for the remaining life predictions: (a) for the same constant stress ratio but a different constant stress amplitude after being subjected to a constant stress amplitude with a constant stress ratio; (b) for a different constant stress ratio, and a different constant stress amplitude after being subjected to a constant stress amplitude with a constant stress ratio; (c) for the same constant stress ratio, and a variable stress amplitude after being subjected to a variable stress amplitude with a constant stress ratio; and (d) for a variable stress ratio with a variable constant stress amplitude after being subjected to a variable stress amplitude with a variable stress ratio........5
Figure 3- A fatigue system structure consisting of input and output with system constants...8
Figure 4- Schematic S-N curve and cyclic loading: (a) failure points (a, b and c) on S-N curve on linear scales; (b) point a on cyclic loading curve corresponding to that on S-N curve; (c) failure stress is lower at N=1.3 than at N=1.5; and (d) point b on cyclic loading curve corresponding to that on S-N curve.........11
Figure 5- Schematic representation of an S–N curve and various points. Inset 1 is for details of iso-damage line slope at point f with respect to the slope of the line between points g and f. Inset 2 is for details of point b in relation to points A, B, and C...13
Figure 6- Schematic relationships between derivatives...14
Figure 7- Damage v. local relative location factor (\(d_l\)) for points F and G, and mid-points f and g shown in Figure 5..18
Figure 8- Damage for points b, B and C as a function of a general relative location factor (\(d_j\)) of a point on line \(\overline{DA}\) on an S–N plane (see Figure 5)..............18
Figure 9- Two unknown non-linear functions; the upper curve represents a damage function for the points on line \(\overline{DA}\) and the lower represents the same on line \(\overline{DB}\) on an S–N plane (see Figure 5)..21
Figure 10- A solid line represents an S–N curve represented by Equation (3) fitted to the data of Broutman and Sahu (1972) for cross-ply glass fibre reinforced plastic laminate with an ultimate strength of 448 MPa and a stress ratio (R)
of 0.05. Fitting parameters for Equation (3) were found to be $\alpha = 2.8 \times 10^{-41}$ and $\beta = 14.2$. The dashed lines on both sides of the solid line represent failure probabilities 10% and 90%.

Figure 11- Effect of n on damage at point C of an S–N curve and other points when point C moves along the horizontal line \overline{DA} at 200 MPa (see Figure 5): (a) curves with $n = 1, 2$ and 3 are partially/fully on the left-hand side of the thick-lined curve representing damage at point B on the S–N curve; and (b) iso-damage lines.

Figure 12- Predictions of failure points with experimental results: (a) high-low sequence loading; (b) low-high sequence loading- two data points for premature failure before the 2nd stress level cycling are denoted by symbol ‘◊’; and (c) combined both for failure points after 2nd stress level without loading sequence paths. The dotted lines on both sides of S-N curve represent failure probabilities 10% and 90%.

Figure 13- Iso-damage lines based on the Palmgren–Miner model (1945).

Figure 14- Graphical representation of linear and non-linear accumulation damage models.

Figure 15. An iso-damage line proposed by Subramanyan (1976) in comparison with that of Palmgren–Miner.

Figure 16- Iso-damage lines from Henry and Ohio (1955) [see Equation (27)], and Hashin and Rotem’s (1978) model [see Equation (29)], violating compatibility. The slopes of iso-damage lines increase at a constant stress level as $\log N$ increases and, as a result, three different damage quantities of three different points at a low number of cycles (N) represent simultaneously the same damage quantity for one point of a high N.

Figure 17- Schematic for damage indicator.

Figure 18- Residual strength as a percentage of the original ultimate strength $v.$ fractional life spent at (a) $\sigma_{\text{max}} = 386.12$ MPa (56 ksi); (b) $\sigma_{\text{max}} = 337.86$ MPa (49 ksi); (c) $\sigma_{\text{max}} = 289.59$ MPa (42 ksi); and (d) $\sigma_{\text{max}} = 241.33$ MPa (35 ksi) (Broutman & Sahu 1972).

Figure 19- Iso-damage lines (dash-dot) represent Broutman and Sahu (1972), dotted lines modified ones by Schaff and Davidson (1997) with $k=0.7$, solid lines validated ones.
Figure 20- Owen and Howe’s (1972) (a) residual strength divided by σ_{uT} v. N/N_f, (b) damage L' as a function of N/N_f and (c) normalised crack length (L) v. N/N_f. .. 46

Figure 21- Residual strengths of glass/epoxy [±45]s after being subjected to fatigue loadings at three stress levels (78.31, 63.59 and 48.50 MPa) and three life fractions. Each group consists of around eight specimens and was cycled for a specific life fraction: 20, 50 or 80% of the nominal lifetime. 49

Figure 22- Comparison of predictions and experimental data conducted by Philippidis and Passipoularidis (2007). Designations: BR (Broutman & Sahu 1972), INT (Adam et al. 1986), H (Hahn & Kim 1975), REI and OM (Schaff & Davidson 1997), W1 and W2 (Sendeckyj 1981), Y1 and Y2 (Yang & Liu 1977 and Yang & Jones 1981). .. 49
Abstract

Fatigue life predictions associated with S–N curves have been largely based on empiricism due to the complexity involving multiple variables such as fatigue life, applied stress, number of loading cycles and stress ratio. A damage model proposed by Palmgren in 1924 and popularised by Miner in 1945 may be one of the most important milestones in the history of fatigue damage research. However, its validity and the principle it adopts have been questioned, and many researchers have attempted to refine the model without much success. The ultimate objectives of the current work were to provide a validity framework theory for fatigue damage associated with the S–N curve and to derive a damage function capable of predicting fatigue life. The validity framework is designed as the fundamental basis to ensure the validity of a damage function in the development process. In the current work, a validity framework theory consisting of axioms, relative conditions for compatibility and boundary conditions is developed for fatigue damage on an S–N plane at a stress ratio of zero. The compatibility in fatigue damage was conceptualised. Manifestation points for accumulated damage were defined and conceptualised for boundary conditions by differentiating between damage accumulated before failure, and failure caused by damage. A selected equation for damage at failure as the reference damage was theoretically validated for further validation of damage on the S–N plane. Also, a damage function capable of predicting fatigue damage is proposed following the validation process. Comparisons between experimental results from two stress level sequence loading and theoretical fatigue life predictions were made and a close agreement between them was found. An evaluative review on conventional fatigue damage models is presented along with the benefits of the new compatibility concept and criteria developed here.
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Constant</td>
</tr>
<tr>
<td>B</td>
<td>Constant or parameter</td>
</tr>
<tr>
<td>b</td>
<td>Parameter of S–N curve</td>
</tr>
<tr>
<td>C</td>
<td>Constant or parameter</td>
</tr>
<tr>
<td>D</td>
<td>Damage</td>
</tr>
<tr>
<td>E</td>
<td>Reduced elastic modulus due to damage</td>
</tr>
<tr>
<td>E_0</td>
<td>Elastic modulus</td>
</tr>
<tr>
<td>F</td>
<td>Load</td>
</tr>
<tr>
<td>K</td>
<td>Parameter of S–N curve</td>
</tr>
<tr>
<td>R</td>
<td>Stress ratio</td>
</tr>
<tr>
<td>N</td>
<td>Number of fatigue loading cycles</td>
</tr>
<tr>
<td>ΔN</td>
<td>Additional number of fatigue loading cycles at a different stress level</td>
</tr>
<tr>
<td>N_f</td>
<td>Number of fatigue loading cycles at failure</td>
</tr>
<tr>
<td>N_{∞}</td>
<td>Number of fatigue loading cycles at the initial endurance limit</td>
</tr>
<tr>
<td>N_n</td>
<td>Number of fatigue loading cycles at nth stress level</td>
</tr>
<tr>
<td>N_{fn}</td>
<td>Number of fatigue loading cycles at failure at nth stress level</td>
</tr>
<tr>
<td>W</td>
<td>Network absorbed at failure</td>
</tr>
<tr>
<td>ΔW</td>
<td>Total energy input</td>
</tr>
<tr>
<td>$w_{\Delta N_n}$</td>
<td>Work done due to ΔN_n cycles</td>
</tr>
<tr>
<td>$\sigma_{R(i)}$</td>
<td>Residual strength of the material after cyclic load at ith stress level</td>
</tr>
<tr>
<td>σ_R</td>
<td>Residual strength</td>
</tr>
<tr>
<td>σ_{UT}</td>
<td>Ultimate tensile strength</td>
</tr>
<tr>
<td>σ_{\max}</td>
<td>Applied peak stress</td>
</tr>
<tr>
<td>σ_{\min}</td>
<td>Applied valley stress</td>
</tr>
<tr>
<td>σ_{∞}</td>
<td>Fatigue limit</td>
</tr>
<tr>
<td>$\Delta \sigma$</td>
<td>Stress amplitude $= (\sigma_{\max} - \sigma_{\min})/2$</td>
</tr>
</tbody>
</table>