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Abstract 
 
The odds ratio remains one of the simplest of measures for quantifying the association structure between two 
dichotomous variables. Its use is especially applicable when the cell values of a 2× 2 contingency table are known. 
However, there are cases where this information is not known. This may be due to reasons of confidentiality or 
because the data was not collected at the time of the study. Therefore one must resort to considering other means of 
quantifying the association between the variables. One strategy is to consider the aggregate association index (AAI) 
proposed by [1]. This paper will explore the characteristics of the AAI when considering the odds ratio of the 2× 2 
contingency table.  
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1. Introduction 
 
  Consider a single two-way contingency table where 
both variables are dichotomous. Suppose that n 
individuals/units are classified into this table such that 
the number classified into the (i, j)th cell is denoted by 

ijn  and the proportion of those in this cell nnp ijij /=  

for i = 1, 2 and j = 1, 2. Denote the proportion of the 
sample classified into the ith row and jth column by 

21 iii ppp +=•  and jjj ppp 21 +=•  respectively.  

Table 1 provides a description of the notation used in 
this paper. 
 

 
 Column 1 Column 2 Total 

Row 1 11n  12n  •1n  

Row 2 21n  22n  •2n  

Total 1•n  2•n  n 
 

Table 1: Notation for a 2x2 contingency table 
 
  Typically, measuring the extent to which the row and 
column variables are associated is achieved by 
considering the Pearson chi-squared statistic calculated  

from the counts and margins of a contingency table. For 
a 2× 2 table of the form described by Table 1, this 
statistic is 
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The direction and magnitude of the association may be 
determined by considering the Pearson product moment 
correlation

 

2121

21122211

••••

−
=

pppp

pppp
r  

 

so that 22 nrX = . The problem at hand is to obtain 
some information concerning the nature of the 
association between the two dichotomous variables 
when only the marginal information is provided.  
   This paper will examine the structure of the 
association between two dichotomous variables based 
only on the marginal information. We shall do so by 
considering the aggregate association index proposed by 
[1, 2] in terms of the odds ratio, a very common measure 
of association for 2× 2 contingency tables. The point of 
our discussion though is not to make inferences about 
the magnitude of the odds ratio, but to use its properties 
and the marginal frequencies (or proportions), to explore 
the association structure of the variables. 
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2. Aggregate Association Index 
 

   Let  •= 1111 /nnP  and •= 2212 / nnP . Here 1P  is the 
conditional probability of an individual/unit being 
classified into ‘Column 1’ given that they are classified 
in ‘Row 1’. Similarly, 2P  is the conditional probability 
of an individual/unit being classified into ‘Column 1’ 
given that they are classified in ‘Row 2’. The following 
comments apply to 1P  only but may be amended if one 

wishes to consider 2P . 
   When the cells of Table 1 are unknown, the bounds of 
the (1, 1)th cell frequency are well understood [4] to lie 
within the interval  
 

( ) ( )•••• ≤≤− 111121 ,min,0max nnnnn .  
 
Therefore, the bounds for 1P  are 
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[2] showed that when only marginal information is 
available the 95% confidence interval for 1P  is  
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If αα UPL << 1  then there is evidence that the row and 
column variables are independent at the α level of 
significance. However, if αLPL << 11  or 11 UPU <<α  
then there is evidence to suggest that the variables are 
associated. From this interval, [1] proposed the 
following index 
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Equation (2) is termed the aggregate association index 
(AAI). For a given α, τhis index quantifies how likely 
there will be a statistically significant association 
between the two dichotomous variables, given only the 

marginal information. A value of Aα close to zero 
suggests there is no association between the two 
variables. On the other hand, an index value close to 100 
suggests that such an association may exist. An index 
above 50 will highlight that it is more likely that a 
significant association may exist than not. We will 
consider that an association is very unlikely, given only 
the marginal information, if the index is below 25. 
 
3 The Odds Ratio 
 
   One of the most common measures of association for a 
2× 2 contingency table is the odds ratio 
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Often the logarithm of the odds ratio (also simply 
referred to as the log-odds ratio) is considered as a 
measure of association between two dichotomous 
variables. When the cell frequencies are known, the 
100(1 – α)% confidence interval for log-odds ratio is 
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   It is demonstrated in [9] that, based only on the 
marginal frequencies of a 2× 2 contingency table, there 
is not enough information available to infer the 
magnitude of the odds ratio. The underlying premise of 
the AAI is not to infer the magnitude of a measure of 
association. Instead it is to determine how likely a 
particular set of fixed marginal variables will enable to 
researcher to conclude that there exists a statistically 
significant association between the two dichotomous 
variables. In this paper, we tackle the problem by 
considering the odds ratio.  
   Since 11p  is unknown here, one may express this 
proportion in terms of the marginal proportions and the 
odds ratio. If one considers (4), 11p  may be expressed as 
a quadratic function in terms of the odds ratio. By 
solving this quadratic expression, we get  
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where 
( ) ( )1211 •••• +++= ppppB θ  

 
This result has been long studied and was considered by, 
for example, [8, pg 7] and [6, section 6.6]. Therefore, 

( )111 ,| •• ppP θ  may be expressed as 
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when 01 ≠•p . By substituting (5) into (3), the chi-
squared statistic can be expressed as a function of the 
odds ratio. 
   It is very difficult to directly determine the            
100(1 – α )% confidence intervals for the odds ratio 
based only on the marginal information. Such an 
interval, which we will denote by αα θ UL ˆˆ << , can be 
derived by considering those θ  that satisfy 
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where 2

αχ  is the 100(1 − α ) percentile of a chi-squared 

distribution with 1 degree of freedom. Calculating αL̂  

and αÛ  is computationally difficult. Therefore, for the 
purposes of our discussion, we shall approximate the 
bounds based on a graphical inspection of 

( )11
2 ,| •• ppX θ  versus θ .  

   We shall also be exploring the use of the log-odds ratio 
in the context of the AAI in the following section. 
 
4 Example – Fisher’s Twin Data 
 
   Consider the 2× 2 contingency table of Table 4 
analysed by [1, 2, 5]. These data concern 30 criminal 
twins and classifies them according to whether they are a 
monozygotic twin or a dizygotic twin. The table also 
classifies whether their same sex twin has been 
convicted of a criminal offence. We shall, for now, 
overlook the problem surrounding the applicability of 
using the Pearson chi-squared statistic in cases where the 
cell frequencies are not greater than five. [6] provides an 
excellent review of strategies for including Yate’s 
continuity correction [11]. However, studies have 
revealed that incorporating the correction is not essential 
(eg [3, 7]) and so we will not consider its inclusion here. 
   The chi-squared statistic for Table 2 is 13.032, and 
with a p-value of 0.0003, shows that there is a 
statistically significant association between the type of 
criminal twin and whether their same sex sibling has 
been convicted of a crime. The product moment 
correlation of r = +0.6591 indicates that this association 
is positive. Therefore a monozygotic twin of a convicted 
criminal is associated with being convicted of a crime, 
while a dizygotic twin of a convicted criminal tends not 
to be a convicted criminal.  
 
 

 

 Convicted Not 
Convicted Total 

Monozygotic 10 3 13 

Dizygotic 3 15 17 

Total 12 18 30 
 

Table 2: Criminal twin data original considered by [5] 
 

   [2] considered the AAI of Table 2 in terms of 1P  and 
showed that A0.05 = 61.83. Therefore, it is likely that a 2
× 2 contingency table with the marginal information of 
Table 2 will reflect a statistically significant association 
(at the 5% level) between the two dichotomous 
variables. Figure 1 provides a graphical inspection of the 
meaning of this index. It shows that the Pearson chi-
squared statistic is maximised at the bounds of 1P ; the 
local maximum chi-squared values are 15.29 and 26.15. 
It can also be seen that the shaded region exceeding the 
critical value of ( ) 84.312

05.0 ==dfχ  but below the chi-
squared curve defined by (2) is quite large. This region 
represents 61.83% of the area under the curve and it is 
this quantity that is the AAI. 
 

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

C
hi
-s
qu
ar
ed
 S
ta
tis
tic

P1

0.9231

 
Figure 1: Plot of X2(P1) versus P1 for Table 1 

 
  For Table 2, 00.25=θ  and the log-odds ratio of 3.22 
has a 95% confidence interval of (1.26, 5.18). Thus, the 
95% confidence interval for the odds ratio is (3.52, 
177.48). Both these intervals indicate that there is a 
significant positive association between the two 
dichotomous variables at the 5% level of significance. 
This is consistent with the findings made regarding the 
Pearson product moment correlation. We shall now 
consider the case where the cell frequencies are 
unknown. 
   Despite the simplicity and popularity of the odds ratio, 
the issue of determining the AAI becomes a little more 
complicated, but equally revealing. Let us first consider 
the relationship between the Pearson chi-squared statistic 
and the odds ratio – see Figure 3. This figure graphically 
shows that a maximum chi-squared statistic is reached 
when the odds ratio approaches zero or reaches infinity. 
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Similarly, the chi-squared statistic achieves its minimum 
of zero when the odds ratio is 1.  

 

 
Figure 3: Plot of X2(θ) versus θ .  

 
   Figure 3 shows the relationship between the chi-
squared statistic and the odds ratio using (5). We can see 
that the chi-squared statistic is exceeded by the critical 
value of 3.84, at the 5% level of significance, when 
(approximately) 7.711.0 << θ . However, since the 
shape of the curve is biased towards those odds ratios 
greater than 1, determining whether there may exist a 
positive or negative association using the odds ratio can 
produce misleading conclusions. 
   To overcome this problem we may also consider the 
log-odds ratio. Figure 4 shows the relationship between 
the Pearson chi-squared statistic and the log-odds ratio 
using (5). It reveals that when using (5) the local 
maximums of the Pearson chi-squared statistic (15.2941 
and 26.1538) are reached as the log-odds ratio 
approaches negative, and positive, infinity.  
 

 
Figure 4: Plot of X2(lnθ)  versus θθθθln .  

 
   Figure 4 shows that, given only the marginal 
information of Table 2, there appears to be some 
evidence that a strong association exists. This is evident 
by considering the area under the curve that lies above 
the critical value of 3.84. In fact, by considering a log-
odds ratio greater than zero, we can see that the area 
under the curve, using (5) is far greater than the area 
under the curve when the log-odds ratio is negative. This 
suggests that, not only is there strong evidence of a 
significant association between the two dichotomous 
variables, but that the association is more likely to be 
positive than negative.  
 
 
 

5 Discussion 
 
   This paper discusses the use of the aggregate 
association index in terms of the odds ratio for a single 2
× 2 contingency table. By considering the index in this 
manner, we can identify how likely two categorical 
variables will be associated based only on the marginal 
frequencies using the most popular of simple measures 
of association. Of course, we may explore the behaviour 
of this index in terms of other simple measures of 
association, including ( )111111 / ••= pppβ  which is 
referred to as the (1, 1)th Pearson ratio. 
   Our focus has been concerned with the chi-squared 
statistic but the index may be generalised for other 
measures of association such as the Goodman-Kruskal 
tau index. Other popular measures for 2× 2 contingency 
tables such as Yule’s Q (“coefficient of association”) or 
Yule’s Y (“coefficient of colligation”) may also be 
examined in this context. On may also consider 
extending this index for multiple 2× 2 tables or larger 
sized contingency tables. We shall consider these, and 
other, issues in future discussions of the index. 
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