- Title
- Fréchet intermediate differentiability of Lipschitz functions on Asplund spaces
- Creator
- Giles, J. R.
- Relation
- Bulletin of the Australian Mathematical Society Vol. 79, Issue 2, p. 309-317
- Publisher Link
- http://dx.doi.org/10.1017/s0004972708001305
- Publisher
- Cambridge University Press
- Resource Type
- journal article
- Date
- 2009
- Description
- The deep Preiss theorem states that a Lipschitz function on a nonempty open subset of an Asplund space is densely Fréchet differentiable. However, the simpler Fabian-Preiss lemma implies that it is Fréchet intermediately differentiable on a dense subset and that for a large class of Lipschitz functions this dense subset is residual. Results are presented for Asplund generated spaces.
- Subject
- Lipschitz functions; Fréchet differentiability; Asplund; Asplund generated spaces
- Identifier
- uon:6988
- Identifier
- http://hdl.handle.net/1959.13/925116
- Identifier
- ISSN:0004-9727
- Reviewed
- Hits: 1269
- Visitors: 1263
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|