- Title
- BCN nanostructures conjugated nanoporous carbon with oxygenated surface and high specific surface area for enhanced CO
2 capture and supercapacitance - Creator
- Bahadur, Rohan; Singh, Gurwinder; Li, Mengyao; Chu, Dewei; Yi, Jiabao; Karakoti, Ajay; Vinu, Ajayan
- Relation
- Chemical Engineering Journal Vol. 460, Issue 15 March 2023, no. 141793
- Publisher Link
- http://dx.doi.org/10.1016/j.cej.2023.141793
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2023
- Description
- Porous carbons, owing to their fascinating properties, are materials of high interest in several fields including gas capture and energy storage. The conjugation of nanostructures such as BCN and surface functionalization is a creative approach to enhance their application potential. However, maintaining high porosity along with the creation of such features is rather complicated. Herein, we report on BCN conjugated nanoporous carbons with the high specific surface area through a unique approach of integrating the synthesis method of BCN and nanoporous carbon with chemical activation. In this approach, the high nitrogen containing precursor, aminoguanidine was mixed with boric acid, casein, and potassium acetate at 900 °C. The characterization data revealed the existence of BCN nanostructures in nanoporous carbon with a high specific surface area (2991 m2 g−1) and oxygen functional groups. The BCN content and the physicochemical properties of the hybrids can be easily tuned by varying the amount of AG in the synthesis mixture. The optimized sample exhibited a high CO2 adsorption capacity of 23.25 mmol g−1 at 0 °C and 30 bar and a high specific capacitance of 182.5 F g−1 at 1 A g−1 with exceptional stability and low resistance in a three-electrode supercapacitor system. The superior performance of synthesized materials for intended applications can be attributed to the synergetic effect of unique porous characteristics, BCN conjugation, and oxygen functionalization in nanoporous carbon. These exceptional results make this facile method of BCN conjugation of porous carbon a highly useful pathway to synthesize a variety of hybrid nanoporous carbon nanostructures for adsorption using such materials, the use of which can further be extended to more applications.
- Subject
- BCN conjugation; high specific surface area; nanoporous carbon; CO2 capture; supercapacitors; SDG 13; Sustainable Development Goals
- Identifier
- http://hdl.handle.net/1959.13/1485209
- Identifier
- uon:51522
- Identifier
- ISSN:1385-8947
- Language
- eng
- Reviewed
- Hits: 845
- Visitors: 844
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|