- Title
- Note on edge irregular reflexive labelings of graphs
- Creator
- Baca, Martin; Irfan, Muhammad; Ryan, Joe; Semanicová-Fenovcíková, Andrea; Tanna, Dushyant
- Relation
- AKCE International Journal of Graphs and Combinatorics Vol. 16, Issue 2, p. 145-157
- Publisher Link
- http://dx.doi.org/10.1016/j.akcej.2018.01.013
- Publisher
- Kalasalingam University
- Resource Type
- journal article
- Date
- 2019
- Description
- For a graph G, an edge labeling fe : E(G) → {1, 2, . . . , ke} and a vertex labeling fv : V(G) → {0, 2, 4, . . . , 2kv} are called total k-labeling, where k = max{ke, 2kv}. The total k-labeling is called an edge irregular reflexive k-labeling of the graph G, if for every two different edges xy and x′ y′ of G, one has wt(xy) = fv(x) + fe(xy) + fv(y) ̸= wt(x′ y′) = fv(x′) + fe(x′ y′) + fv(y′). The minimum k for which the graph G has an edge irregular reflexive k-labeling is called the reflexive edge strength of G. In this paper we determine the exact value of the reflexive edge strength for cycles, Cartesian product of two cycles and for join graphs of the path and cycle with 2K2.
- Subject
- edge irregular reflexive; reflexive edge strength; cycles; cartesian product of cycles
- Identifier
- http://hdl.handle.net/1959.13/1454625
- Identifier
- uon:44976
- Identifier
- ISSN:0972-8600
- Rights
- © 2018 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
- Language
- eng
- Full Text
- Reviewed
- Hits: 1643
- Visitors: 1831
- Downloads: 194
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Publisher version (open access) | 232 KB | Adobe Acrobat PDF | View Details Download |