- Title
- Giant spin splitting induced by a symmetry-braking van der Waals interaction
- Creator
- Szary, Maciej J.; Michalewicz, Marek T.; Radny, Marian W.
- Relation
- Applied Surface Science Vol. 494, Issue 15 November 2019, p. 619-626
- Publisher Link
- http://dx.doi.org/10.1016/j.apsusc.2019.07.189
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2019
- Description
- It is shown, based on the density functional theory (DFT) calculations, that weak van der Waals interaction between monolayers of Pb and MoTe2 introduce a symmetry breaking that gives rise to spin polarized interface states. This is a departure from a conventional picture of band spin splitting in the adsorption systems as it is usually associated with the strong surface interactions e.g. covalent bonds, which results in electronic charge asymmetry in the vicinity of the adatom's nuclei. The analysis based on the effective Hamiltonian within the orbital-angular-momentum approach to the Rashba effect indicates that the observed spin splitting originates directly from the atomic spin-orbit coupling, with the orbital angular momentum unquenched due to broken inversion symmetry.
- Subject
- dichalcogenides; lead; spin-orbit coupling; spin splitting; orbitual angular momentum; density functional theory
- Identifier
- http://hdl.handle.net/1959.13/1416746
- Identifier
- uon:37113
- Identifier
- ISSN:0169-4332
- Language
- eng
- Reviewed
- Hits: 1159
- Visitors: 1153
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|