- Title
- Dietary intake and food sources of one-carbon metabolism nutrients in preschool aged children
- Creator
- Taylor, Rachael M.; Smith, Roger; Collins, Clare E.; Evans, Tiffany-Jane; Hure, Alexis J.
- Relation
- European Journal of Clinical Nutrition Vol. 73, Issue 8, p. 1179-1193
- Publisher Link
- http://dx.doi.org/10.1038/s41430-018-0376-7
- Publisher
- Nature Publishing Group
- Resource Type
- journal article
- Date
- 2019
- Description
- Background: It is hypothesised that epigenetic mechanisms including DNA methylation may underlie the relationship between early-life nutrition and child cognitive outcomes. This study aimed to identify dietary patterns associated with the intake of one-carbon metabolism nutrients in children aged 2-3 years. Methods: A validated 120-item semi-quantitative food frequency questionnaires at 2-3 years of age were used to estimate the intake of one-carbon metabolism nutrients (methionine, folate, choline and vitamins B2, B6, B12) and to quantify mean number of serves consumed of the food groups specified by the Australian Guide to Healthy Eating (AGHE). Descriptive statistics were used to analyse the contribution of each food group and food items to the total intake of one-carbon metabolism nutrients. Linear regression was used to test for linear trends in food group servings by nutrient intake quintiles. Results: No child (n = 60) from the Women And Their Children's Health (WATCH) study consumed the recommended number of serves for all AGHE food groups. Dairy and alternatives (18-44%), discretionary foods (6-33%) and meat and alternatives (6-31%) were the main sources of most one-carbon metabolism nutrients. Most child intakes of one-carbon metabolism nutrients exceeded the nutrient reference values (NRVs), except for the intake of choline, for which the mean intake was 9% below the adequate intake (AI). Conclusion:: Dairy and alternatives, discretionary foods and meat and alternatives food groups contributed significantly to the children's intake of one-carbon metabolism nutrients. The children generally had low intakes of meat and alternative foods, which may explain their inadequate intake of choline.
- Subject
- diet; dietary intake; food sources; preschool children; DNA methylation; one-carbon metabolism; nutrients
- Identifier
- http://hdl.handle.net/1959.13/1408561
- Identifier
- uon:35858
- Identifier
- ISSN:0954-3007
- Rights
- © The Author(s) 2018. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Language
- eng
- Full Text
- Reviewed
- Hits: 2689
- Visitors: 3016
- Downloads: 352
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Publisher version (open access) | 568 KB | Adobe Acrobat PDF | View Details Download |