- Title
- Comparing transient and steady-state analysis of single-ring infiltrometer data for an abandoned field affected by fire in Eastern Spain
- Creator
- Di Prima, Simone; Lassabatere, Laurent; Rodrigo-Comino, Jesús; Marrosu, Roberto; Pulido, Manuel; Angulo-Jaramillo, Rafael; Úbeda, Xavier; Keesstra, Saskia; Cerdà, Artemi; Pirastru, Mario
- Relation
- Water Vol. 10, Issue 4, no. 514
- Publisher Link
- http://dx.doi.org/10.3390/w10040514
- Publisher
- MDPI AG
- Resource Type
- journal article
- Date
- 2018
- Description
- This study aimed at determining the field-saturated soil hydraulic conductivity, Kfs, of an unmanaged field affected by fire by means of single-ring infiltrometer runs and the use of transient and steady-state data analysis procedures. Sampling and measurements were carried out in 2012 and 2017 in a fire-affected field (burnt site) and in a neighboring non-affected site (control site). The predictive potential of different data analysis procedures (i.e., transient and steady-state) to yield proper Kfs estimates was investigated. In particular, the transient WU1 method and the BB, WU2 and OPD methods were compared. The cumulative linearization (CL) method was used to apply the WU1 method. Values of Kfs ranging from 0.87 to 4.21 mm·h-1 were obtained, depending on the considered data analysis method. The WU1 method did not yield significantly different Kfs estimates between the sampled sites throughout the five-year period, due to the generally poor performance of the CL method, which spoiled the soil hydraulic characterization. In particular, good fits were only obtained in 23% of the cases. The BB, WU2 and the OPD methods, with a characterization based exclusively on a stabilized infiltration process, yielded an appreciably lower variability of the Kfs data as compared with the WU1 method. It was concluded that steady-state methods were more appropriate for detecting slight changes of Kfs in post-fire soil hydraulic characterizations. Our results showed a certain degree of soil degradation at the burnt site with an immediate reduction of the soil organic matter and a progressive increase of the soil bulk density during the five years following the fire. This general impoverishment resulted in a slight but significant decrease in the field-saturated soil hydraulic conductivity.
- Subject
- post-fire soil hydraulic characterization; infiltration; bottomless bucket method; single-ring infiltrometer; field-saturated soil hydraulic conductivity; data analysis procedures
- Identifier
- http://hdl.handle.net/1959.13/1386038
- Identifier
- uon:32351
- Identifier
- ISSN:2073-4441
- Rights
- This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
- Language
- eng
- Full Text
- Reviewed
- Hits: 10747
- Visitors: 11518
- Downloads: 551
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Publisher version (open access) | 6 MB | Adobe Acrobat PDF | View Details Download |