- Title
- An arithmetical excursion via Stoneham numbers
- Creator
- Coons, Michael
- Relation
- ARC.DE140100223
- Relation
- Journal of the Australian Mathematical Society Vol. 96, Issue 3, p. 303-315
- Publisher Link
- http://dx.doi.org/10.1017/S1446788713000682
- Publisher
- Cambridge University Press
- Resource Type
- journal article
- Date
- 2014
- Description
- Let p be a prime and b a primitive root of p². In this paper, we give an explicit formula for the number of times a value in {0, 1, ..., b - 1} occurs in the periodic part of the base-b expansion of 1/pm. As a consequence of this result, we prove two recent conjectures of Aragón Artacho et al. [‘Walking on real numbers’, Math. Intelligencer 35(1) (2013), 42–60] concerning the base-b expansion of Stoneham numbers.
- Subject
- Stoneham numbers; base-b expansions; normal numbers
- Identifier
- http://hdl.handle.net/1959.13/1303451
- Identifier
- uon:20656
- Identifier
- ISSN:1446-7887
- Language
- eng
- Reviewed
- Hits: 441
- Visitors: 537
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|