- Title
- Extremal graphs without cycles of length 8 or less
- Creator
- Marshall, Kim; Miller, Mirka; Ryan, Joe
- Relation
- Electronic Notes in Discrete Mathematics Vol. 38, p. 615-620
- Publisher Link
- http://dx.doi.org/10.1016/j.endm.2011.10.003
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2011
- Description
- Let ex(n;t) denote the maximum number of edges in a graph G having order n without cycles of length t or less. We prove ex(23;8)=28,ex(24;8)=20 and ex(25;8)=30. Furthermore, we present new lower and upper bounds for n≤49 and the extremal numbers when known.
- Subject
- extremal graph; extremal number; girth
- Identifier
- http://hdl.handle.net/1959.13/1062931
- Identifier
- uon:17169
- Identifier
- ISSN:1571-0653
- Language
- eng
- Reviewed
- Hits: 2107
- Visitors: 1053
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|