- Title
- Lipschitz functions with maximal Clarke subdifferentials are generic
- Creator
- Borwein, Jonathan M.; Wang, Xianfu
- Relation
- Proceedings of the American Mathematical Society Vol. 128, p. 3221-3229
- Publisher Link
- http://dx.doi.org/10.1090/S0002-9939-00-05914-1
- Publisher
- American Mathematical Society (AMS)
- Resource Type
- journal article
- Date
- 2000
- Description
- We show that on a separable Banach space most Lipschitz functions have maximal Clarke subdifferential mappings. In particular, the generic nonexpansive function has the dual unit ball as its Clarke subdifferential at every point. Diverse corollaries are given.
- Subject
- Lipschitz function; Clarke subdifferential; seperable Banach spaces; Baire category; partial ordering; Banach lattice; approximate subdifferential
- Identifier
- http://hdl.handle.net/1959.13/940407
- Identifier
- uon:12997
- Identifier
- ISSN:0002-9939
- Rights
- First published in Proceedings of the American Mathematical Society in Vol. 128, No. 11, pp. 3221-3229, 2000, published by the American Mathematical Society.
- Language
- eng
- Full Text
- Reviewed
- Hits: 2214
- Visitors: 3059
- Downloads: 341
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT01 | Publisher version (open access) | 164 KB | Adobe Acrobat PDF | View Details Download |