- Title
- Lipschitz functions with maximal Clarke subdifferentials are staunch
- Creator
- Borwein, Jonathan M.; Wang, Xianfu
- Relation
- Bulletin of the Australian Mathematical Society Vol. 72, Issue 3, p. 491-496
- Publisher Link
- http://dx.doi.org/10.1017/S0004972700035322
- Publisher
- Cambridge University Press
- Resource Type
- journal article
- Date
- 2005
- Description
- In a recent paper we have shown that most non-expansive Lipschitz functions (in the sense of Baire's category) have a maximal Clarke subdifferential. In the present paper, we show that in a separable Banach space the set of non-expansive Lipschitz functions with a maximal Clarke subdifferential is not only generic, but also staunch in the space of non-expansive functions.
- Subject
- Lipschitz functions; Clarke subdifferentials; non-expansive functions
- Identifier
- http://hdl.handle.net/1959.13/940288
- Identifier
- uon:12980
- Identifier
- ISSN:0004-9727
- Language
- eng
- Full Text
- Reviewed
- Hits: 1025
- Visitors: 1207
- Downloads: 219
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT01 | Publisher version (open access) | 217 KB | Adobe Acrobat PDF | View Details Download |