- Title
- Baker-type estimates for linear forms in the values of q-series
- Creator
- Väänänen, Keijo; Zudilin, W.
- Relation
- Canadian Mathematical Society Vol. 48, Issue 1, p. 147-160
- Publisher Link
- http://dx.doi.org/10.4153/CMB-2005-013-5
- Publisher
- University of Toronto Press
- Resource Type
- journal article
- Date
- 2005
- Description
- We obtain lower estimates for the absolute values of linear forms of the values of generalized Heine series at non-zero points of an imaginary quadratic field I, in particular of the values of q-exponential function. These estimates depend on the individual coefficients, not only on the maximum of their absolute values. The proof uses a variant of classical Siegel’s method applied to a system of functional Poincar´e-type equations and the connection between the solutions of these functional equations and the generalized Heine series.
- Subject
- measure of linear independence; q-series; Baker-type estimates
- Identifier
- http://hdl.handle.net/1959.13/928064
- Identifier
- uon:10330
- Identifier
- ISSN:0008-4395
- Language
- eng
- Reviewed
- Hits: 1589
- Visitors: 1769
- Downloads: 1
Thumbnail | File | Description | Size | Format |
---|