- Title
- Angle dependence of the shear behaviour of asymmetric carbon nanotubes
- Creator
- Ghadyani, Ghasem; Soufeiani, Leila; Ochsner, Andreas
- Relation
- Materials & Design Vol. 116, p. 136-143
- Publisher Link
- http://dx.doi.org/10.1016/j.matdes.2016.11.097
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2017
- Description
- Asymmetric configurations of single-walled carbon nanotubes consist of a huge number of varieties compared to symmetric structures. A comprehensive characterization of all possible chiralities has been conducted in this research for the first time. In order to characterize asymmetric single-walled carbon nanotubes (SWCNTs), several finite element models have been employed to reach a logical relation between the geometry of the symmetric and asymmetric configurations and their shear modulus. Two groups of asymmetric structures have been selected to characterize asymmetric configurations. The chiral angle (θ) has been applied in this research to account for the shear behaviour of chiral configurations. The chiral angle perception has been used for a new insight of balancing between physical resemblances and shear behaviour of symmetric and asymmetric configurations. In the last section, the trend of the shear behaviour and chiral angle for asymmetric groups resulted in a general equation for predicting an asymmetric configuration by symmetric structures with high accuracy as the main novelty of the current study. This kind of characterization can be developed, not only for other mechanical properties of SWCNTs, but is also applicable for the characterization and the design of other composite nanotubes such as BN, BC₃ and BCN₂ nanotubes.
- Subject
- carbon nanotubes; angle dependence; shear modulus; finite element model
- Identifier
- http://hdl.handle.net/1959.13/1399330
- Identifier
- uon:34581
- Identifier
- ISSN:0264-1275
- Language
- eng
- Reviewed
- Hits: 1122
- Visitors: 1243
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|