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Abstract- We investigate cooperative wireless relay net-
works in which the nodes can help each other in data
transmission. We study different coding strategies in the
single-source single-destination network with many relay
nodes. Given the myriad of ways in which nodes can coop-
erate, there is a natural routing problem, i.e., determining
an ordered set of nodes to relay the data from the source to
the destination. We find that for a given route, the decode-
and-forward strategy, which is an information theoretic
cooperative coding strategy, achieves rates significantly
higher than that achievable by the usual multi-hop coding
strategy, which is a point-to-point non-cooperative coding
strategy. We construct an algorithm to find an optimal
route (in terms of rate maximizing) for the decode-and-
forward strategy. Since the algorithm runs in factorial time
in the worst case, we propose a heuristic algorithm that
runs in polynomial time. The heuristic algorithm outputs
an optimal route when the nodes transmit independent
codewords. We implement these coding strategies using
practical low density parity check codes to compare the
performance of the strategies on different routes.

I. INTRODUCTION

Research in high data rate wireless systems has en-
abled applications to go wireless and become more
interesting, e.g., wireless Internet access, mobile video
conferencing and mobile TV on buses and trains. These
applications would have been impossible without high
rate wireless transmission links. As many wireless de-
vices are battery operated, power constraint is often
imposed on them to make sure that they maintain a
certain desired lifespan. In this paper, we investigate
optimal routing problem to maximize the transmission
rate in the wireless network where there is a power
constraint on each node.
The wireless channel is inherently broadcast, in that

messages sent out by a node are heard by all nodes
listening in the same frequency band and in commu-
nication range. This opens up opportunities for richer
forms of cooperation among the wireless users/nodes.
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Fig. 1. Different coding strategies for multiple relay channels.

For example, rather than using point-to-point multi-hop
routing (a direct adaptation from wired networks), where
a node only transmits to the next node in the "route",
cooperative strategies, such as information theoretic re-
laying [1]-[3] and opportunistic routing [4], could be
used. These richer forms of cooperation can lead to
efficient distributed algorithms and can increase the end-
to-end data rates. The gain from cooperation has been
shown in information theoretic analyses [5] [6] and
demonstrated in practical implementations [7]-[9].
We now briefly describe what we mean by these richer

forms of cooperation, often using the term "coding"
to highlight that our approach stems from information
theory [10]. Figs. 1(a)-(c) depict wireless networks in
which node 1 is the source, nodes 2 and 3 are relays, and
node 4 is the destination. In Fig. l(a), since every node
can hear what node 1 transmits, the simplest strategy
is for node 4 to directly decode from node 1, which we
call the single-hop coding strategy (SH). However, when
nodes 1 and 4 are situated far apart, signals from node
1 go through severe attenuation before they reach node
4. This is when relay nodes 2 and 3 can help. Referring
to Fig. 1(b), node 1 transmits to node 2. Node 2 fully
decodes the data and re-transmits to node 3. Node 3 does
the same and relays the data to node 4. This is the well
known multi-hop coding strategy (MH). Although we
can view relay nodes helping the source to transmit data
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as a form of cooperation, as far as decoding is concerned,
SH and MH are still point-to-point strategies (a node
only decodes from one node) and we categorize them as
non-cooperative coding strategies. Taking a closer look
at MH, we see that node 3 can hear and decode node
l's transmission (although it is intended for node 2).
This suggests a cooperative coding strategy, depicted
in Fig. 1(c), in which node 3 decodes transmissions
from nodes 1 and 2, and node 4 decodes transmissions
from nodes 1-3. This cooperative way of encoding and
decoding stems from an information theoretic approach
and is termed the decode-and-forward coding strategy
(DF) [1]-[3].

Regardless of whether MH or DF is used for data
transmission, there is a sequence of nodes through which
data flows. Kurose and Ross [11] define a route as
"the path taken by a datagram between source and
destination". The datagram "hops" from one node to
the next node, capturing the scenario in which a node
receives data only from a node behind and forwards data
only to the node in front. However, in the cooperative
coding paradigm, data does not flow from one node to
another; rather it is from many to many with complex
ways of cooperating. To describe the flow of information
in these new modes of cooperation, we define a route as
follows.

Definition 1: The route taken by a packet from the
source to the destination is an ordered set of nodes in-
volved in encoding/transmitting and receiving/decoding
of the packet. The sequence of the nodes in the route is
determined by the order in which nodes' transmit signals
first depend on the packet.
Remark 1: If a group of nodes transmits simultane-

ously, then they can be ordered arbitrarily within the
group. For example, consider a four node network, in
which node 1 first broadcasts the message, and then
nodes 2 and 3 listen and simultaneously transmit to node
4. The route here can be described by {1, 2, 3, 4} or
{1,3,2,4}.
Remark 2: Fig. 1 describes three coding strategies for

the same four-node network. The route for SH in Fig. la
is {1, 4}. The routes for MH and DF in Figs. lb & Ic
respectively are both {1, 2, 3, 4}.

Given the myriad of ways in which nodes can cooper-
ate, there is a natural routing problem in the cooperative
coding paradigm. Furthermore, route selection directly
affects the end-to-end data transmission rate. For DF,
the current routing solutions for MH cannot be applied
trivially. In this paper, we construct an algorithm to find
an optimal route (in terms of maximizing rates) for DF.

Our contributions in this paper are as follows.
1) We show how much gain one can expect using

DF, a cooperative coding strategy, over MH, a non-
cooperative coding strategy, on the same route.

2) We construct an algorithm that finds rate maximiz-
ing routes for DE

3) We construct a heuristic algorithm that runs in
polynomial time. We show that the heuristic al-
gorithm finds an optimal route for DF when the
nodes send independent codewords.

4) We implement DF using low-density parity-check
(LDPC) codes [12] [13]. Also, we show the perfor-
mance of codes using different coding strategies
and on different routes.

This paper investigates cooperative coding and routing
in the wireless network based on an information theoretic
approach. A few idealized assumptions are made (e.g.,
infinite block length, unbounded communication range).
Some of these assumptions are, however, relaxed in the
simulations in Section VIII.

A. Related Work

Communications in wireless networks has been pro-
gressing from MH to that using cooperative strategies.
More research is being directed toward designing codes
that are based on information theoretic cooperative cod-
ing strategies to harvest the gain in transmission rates
predicted by information theory. Examples of codes
based on cooperative coding strategies include DF-based
Turbo codes [14][15] and LDPC codes [16]-[19] for the
single relay channel. It has been mentioned that some
of these codes can be extended to the multiple relay
channel [2] [3] [5] [6].

In the past, link optimization (i.e., maximizing the
transmission rate between node pairs) and route opti-
mization were done separately. Routing was optimized
after the links between the nodes had been established.
Algorithms such as Bellman-Ford [20, Section 24.1][21]
and Dijkstra's algorithm [22] that assign costs to all links
were used to find a route with the lowest cost from source
to the destination. These ways of separating routing and
coding are not optimal for MH or DF as the rates of
the links change depending on which route is chosen.
Realizing the inter-dependency between links and routes,
it has been suggested that links and routes be jointly
optimized [23]-[26]. This gives rise to cross-layering
[27] in the OSI model. However, in these joint routing
and coding work, data transmission from the source to
destination is still based on MH. Routing algorithms that
are optimized for MH might not be suitable for DF.
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In Ad hoc On-demand Distance Vector Routing
(AODV) [28] and Dynamic Source Routing (DSR) [29],
the source node broadcasts a route discovery packet.
Neighboring nodes receive and re-broadcast the packet.
When the destination receives the packet, a route is
formed by tracing the path that the packet took. These
routing algorithms minimize the transmission delay but
might not optimize the transmission rate.

In Extremely Opportunistic Routing (ExOR) [4], a
node broadcasts its data to a set of potential relays.
Nodes in this set transmit acknowledgments and then
selected nodes forward the data. Though ExOR does not
have predefined routes, MH is used on the effective route
taken by a packet.
As far as we know, routing algorithms for cooper-

ative coding have not been investigated. In this paper,
we propose algorithms to find optimal routes for DF-
based codes in the multiple relay channel. Our work
complements code design by finding the best route
(rate maximizing) on which the codes can be used. As
previous work focused on cooperative coding for the
single relay channel, in this paper, we implement DF-
based LDPC codes on the multiple relay channel. We
then compare the transmission rate of different coding
strategies on different routes.
We focus on the multiple relay channel [2][3][5][6],

which is a single-source single-destination network, as a
first step towards understanding general multiple-source
multiple-destination networks. We study DF because it is
one of the "more implementable" information theoretic
coding strategies [14]-[19].

II. MOTIVATING COOPERATION

A. Network Model

We consider a D-node network S {1, 2, 3 ....
D -1, D} with one source (node 1) and one destination
(node D). Node i, Vi c S, either transmits at fixed
average power Pi or turns off. We use the standard
path loss model for signal propagation. The received
power at node t from node i is given by Pit = i'dfPFi,
where dit is the distance between nodes i and t, r1 is the
path loss exponent (rT > 2 with equality for free space
transmission), and t, is a positive constant. The receiver
at node t is subject to thermal ambient noise of power
Nt. We assume duplex nodes, i.e., nodes can transmit
and receive simultaneously. We assume that all nodes
have the same power constraint and noise variance.

Given this network model, we investigate how nodes
can cooperatively send messages from the source to des-
tination. We study and compare several coding strategies.

Remark 3: We consider single-flow networks. This
is the first step in understanding a more complicated
problem of multiple flows. The relevance of our work
in multiple-flow networks is as follows:

1) In a multiple-flow networks where each flow uses
an allocated orthogonal channel, the rate of each
flow can be optimized in respective channel using
the algorithm derived in this paper.

2) In a multiple-flow network with existing flows, if
we wish to add a new flow, the algorithm in this
paper finds an optimal route for the new flow. Note
that adding a new flow might affect existing flows.
We can restrict the transmit power of nodes in the
new flow to control the interference introduced.

B. Single-Hop Coding Strategy (SH)
In SH, the source directly transmits data to the destina-

tion. The signal-to-noise ratio (SNR) at the destination,
node D, is given by ?SH(D) = PIDN61. The Shannon
capacity of this SH link is RSH = log (1 + ?sH(D)).
This rate depends on the source-destination distance and
can be poor if the source and destination are situated far
away from each other (because of signal attenuation).
Remark 4: We assume that nodes that do not partici-

pate in relaying the data for a source-destination pair do
not cause interference. Another way to account for the
external noise is to include it in the receiver noise.

C. Multi-Hop Coding Strategy (MH)
In MH, we make use of the relays to aid the trans-

mission from the source to the destination. The source
simply transmits to the next relay. The first relay decodes
the message and re-transmits it to the second relay,
and so on until the destination. This can improve the
transmission rate if the attenuation from the source/relay
to the next relay is reduced as compared to that in SH.
However, since all relays transmit simultaneously, there
exists interference, beside noise, at the receiver.

In the rest of this paper, we denote a route by
M = {Ml,m2,...,rnM }. We define the set of all
possible routes from the source (node 1) to the desti-
nation (node D) by TI(S) = {{nl,m2,.-.-.,MI}:
m2, ..., MIMI-1 are all possible selections and permu-
tations of the relays (including the empty set), ml

l, mIMI D}.
Using the route M, the SNR at node mt is

?MH(mt, M)
/IMI-1

Pmt_ 1mt E Pminmt + Nmt

-i=lJiJ

(1

(1)
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Since all relays and the destination must fully decode
the messages, the transmission rate from the source to
the destination using route M is

RMH(M)
1

min - log (l + 7MH(M, M)) . (2)
nM {Tnil} 2

We term RMH(M) the rate supported by the route M
using MH. The maximum rate using by MH, optimized
over all possible routes, is

Rmax = max RMH(M).'MH McHi(S) (3)

We note that there may exist more than one route that
support this maximum rate.

D. Decode-and-Forward Cooperative Coding (DF)

Using DF [1]-[3], each decoder decodes transmissions
from all nodes behind. E.g., the third node in the route
decodes the transmissions from the first and the second
node. So, the third node decodes each source message
using two blocks of received codewords. In addition,
assuming that the nodes in front decode the messages
correctly, a node knows what they transmit and hence
it cancels the interference from these nodes. It has been
shown that in order to maximize the DF rate on route M,
node mi transmits Xmn = I1M P=i+1 \aTniTnjPriurj3
for 0 < L-M+ imm < 1, Vi = ,...,1 M 1.
Urj are independent Gaussian random variables with
unit variance. {cyijIi = i + 1, ..., IM } are the power
splits of node i, allocating portions of its transmit power
to transmit independent sub-codewords Uj. Doing this
the SNR of node mt in route M is

t /j1\2

?DF(mt,M) = N ZE nrnimjPMiMt) (4)
j=2 i=1

Using the route M, DF can achieve rates up to

RDF(M) = max min - log (1 + ?DF(M, M)),
ozij rM {\ni} 2

(5)
and the maximum rate using by DF is

RDF= max RDF(M). (6)

Definition 2: We define the reception rate of node m
in route M as RTn(M) 9log (1 + ?DF(M, M)). It is
the rate at which node m can fully decode the messages.
The same concept applies to MH.
Remark 5: In practice, a relay in the route might

decode a message wrongly, and hence forward the wrong
message. When this happens, the nodes behind, when

Samples taken for each IMI = 105
1000

o 100

ai)

a)

Z 10

5 10 15 20 25 30 35
No. of nodes in route, IMI

Fig. 2. Ratio of average transmission rate SH, MH, and DF versus

IM1 for two cases: (1) dID = 10 and (2) dID = imi-1.

trying to cancel the co-channel interference introduced
by this relay, will introduce more noise at their decoders.
While this scenario is not captured in (4), we allow
imperfect interference cancellation in our simulations
(Section VIII).

E. Comparing the Strategies
It is easy to see that, for any chosen routeM with four

nodes or more, TDF(m,M) > ?MH(m, M), Vm E M.
Also, we can show that for any M E U(S),

RDF(M) = RMH(M) -

RDF(M) > RMH(M),
RDF(M) > RMH(M),

RSH, for M1= 2

for IM1 = 3,

for IM1 > 4,

(7a)
(7b)
(7c)

and R maX > Rmax > RSH.
However, it is not clear how much again, on average,

we can expect using DF compared to MH and SH. Now,
we compare the rates of SH, MH, and DF for randomly
generated routes of different lengths in a line topology.
We consider two cases: (1) dID 10 and (2) dID =

IM 1-1. Then IM 1-2 nodes are randomly placed along
the straight line joining nodes 1 and D. Note that in case
1, node density increases with the number of nodes while
in case 2, the average adjacent node spacing is constant
for all AIA. We set Pi = Ni 1 for all transmitters
and receivers, and r, = 1, rT 2. For each randomly
generated route, we calculate the transmission rate using
SH, MH, and DF. Here we restrict the nodes to transmit
independent codewords for easier optimization, i.e., we
set aij = 1,Vi,Vj = i + 1 and ai0= O,Vj # i + 1.
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Fig 2 shows the results for cases 1 and 2. For a route of
25 nodes, the DF rate is roughly two orders of magnitude
higher than that of SH and MH for both cases. Moreover,
as we increase the number of nodes in the route, the gain
of DF over MH/SH increases for both cases.
We note that if the nodes are allowed to send

arbitrarily correlated codewords, the DF rate can
be higher. For example, consider the route M =

{(0, 0), (0.5, 0), (2, 0), (3, 0), (4, 0)}. With independent
codewords, RDF(M)/RMH(M) = 2.95, but with ar-
bitrarily correlated codewords, RDF(M)/RMH(M)
4.40.

III. THE OPTIMAL ROUTING PROBLEM

We define the optimal route set for DF as

QDF- {M E Il(S): RDF(M) = RDF (8)

where Il(S) is a set of all possible routes from the
source to the destination. We define the optimal route set
because the rate maximizing route may not be unique.
Then the optimal DF routing problem is

Find at least one MDPF C QDF and RDF (MDF)

The optimal route set and routing problem for MH are
similarly defined.

Finding optimal routes for MH and DF by brute force
is hard, as it involves testing all routes in Il(S). In
Sections IV and V. we construct an algorithm that finds
M opt potentially without having to test all routes in
Il(S). However, this algorithm runs in factorial time in
the worst case. Hence, in Section VII, we proposed a
heuristic algorithm, which runs in polynomial time.

IV. THE NEAREST NEIGHBOR ALGORITHM

Now, we present an algorithm to find an optimal
route for DF. In the section, we assume that nodes use
independent codewords, i.e., we set aij = 1,Vi, Vj
i + 1 andacj = O,Vj # i + 1.
Remark 6: Although the theorems in this section are

proven assuming that the nodes send independent code-
words, we can also show that they hold even when the
nodes transmit arbitrarily correlated codewords [30].
Remark 7: We consider independent codewords in

this section because coherent combining is practically
infeasible. When the nodes are operating in the GHz
range, it is difficult, if not impossible, to synchronize
the carriers to nanosecond accuracy. Furthermore, even
if we have very precise clocks, coherent combining is
still unlikely in a multiple-node network. For example,
in a four-node route, even if we manage to synchronize

nodes 1 and 2 to allow coherent combining at node 3,
we might not be able to ensure that they will coherently
combine at node 4.

First, we define the nearest neighbor with respect to
a route.

Definition 3: Node i , M is a nearest neighbor with
respect to the route M iff

Pmi > Pmj, Vm CM,Vj CS\(Mu{i}). (9)
Note that nearest neighbor might not be unique. Now,
we describe the nearest neighbor algorithm (NNA).
Algorithm ] (NNA):
1) Initialize A = {nmI}, where mI = 1.
2) If there exists a unique nearest neighbor it with

respect to the current route M, we append it to
the current route: M <- M U {it}. Else, the NNA
terminates prematurely. SinceM is an ordered set,
the notation A U B means appending ordered set
B to the end of ordered set A.

3) Step 2 is repeated until the destination node, node
D, is added into M.

The algorithm is said to terminate normally if node D
is added to the route. Otherwise, the algorithm is said to
terminate prematurely. If the NNA terminates normally,
we have the following theorem.

Theorem 1: Consider a multiple node wireless net-
work with one source and one destination. If the NNA
terminates normally, then the NNA route is optimal for
DF.

To prove Theorem 1, we need the following lemmas.
Lemma 1: When we add the unique nearest neighbor,

node a*, to route M, the rate supported by the new route
M1 M u{UmIMn = a*} is greater or equal than the
rate supported by the route formed by adding any other
node to M. Mathematically,

RDF(M Uf{a*}) > RDF(MU{b}),Vb c S\(MU{a*}).
(10)

Proof: [Proof for Lemma 1] Considering M2, the
reception rate of node mIM2 b is

Rb(M U {b})
1 Fi

-log 11+ Nb Pmib :
2

(1 1)

and the reception rate of the node m1M.1 = a* in route
M1 is

1
m

Ra* (M u{a*}) = log 1 -*'E P,ia* . (12)
Li=l
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Clearly, if Pma* > Pmb, Vm c M with at least one Lemma 2 follows by noting that RDF(MA2) =

inequality, Ra (Mi) > Rb(M2). Hence RDF(M1) > minGM2\f{a*}Rj(M2) > mincmE \{a*}Ri(Mi) =

RDF(M2). * RDF(M ))
We have proven that at any point of time during route Lemma 3: For a route that contains all nearest neigh-

construction, in order to maximize the rate supported bors, the supported rate is always higher or equal to any
by the route, we must choose the nearest neighbor route, of the same length, with one or more non-nearest
(assuming it exists). Next, we show that choosing the neighbors in it.
nearest neighbor will not harm the rate supported by the Proof: [Proof for Lemma 3] Lemma 3 can be proven
route even when more nodes are added. by applying Lemma 2 recursively until the entire set is
Lemma 2: Let M = {at,a22 a } be a route replaced by nearest neighbor nodes.

formed by adding the nearest neighbor one by one Now we consider routes of different lengths but that
starting from the source. Now, arbitrarily add K nodes end on the same node.
to M. The first node b, is not a nearest neighbor and
the rest may or may not be nearest neighbors. In other Leman4 oder a r Ms whed nao 1 ist

words, 1 {at,a~,..., bi b2, .. b~, wher source, and node m M, D iS the destination, that iSwords, M 1 = a*, a*, . . . , a* I, bl, b2... , bK 1, where'
b, is not a nearest neighbor to M. We can always replace M1 m 2, ...~ (18)
b, by the nearest neighbor a* ±1 (assuming it exists) =m .
to obtain

at,..., aM **bHere, one or more nodes in {m2, MIm, II} are not
{al, .. a*+' b, a MbK-1, nearest neighbors. The following route where all nodes

if a* I,~fb,.,b-1M2= i + bK 1 are added according to the NNA (assuming that it does
{ aat...,a*M ,a*MI+j,bj,...,bk 1,bk+1,..., bK}, not terminate prematurely) supports rate as good or

if a* ±1 bk, for some bk {b1 ..b}bK-1,higher than that supported by M1.
(13)

where RDF(M2) > RDF(M 1).
Proof: [Proof for Lemma 2] For both cases in (13),

the reception rates for the first IM1 nodes in both M1
and M2 remain the same as each of them decodes from
the same nodes behind the route. In equations,

Ra (M2)= Ra (Ml), Vi =2,3,..., M . (14)
From Lemma 1, Ra-M +l(M2) > Rb (M1).
Now, we study the case when a*

{bl,. .., bK-1}. For nodes {bl, . . ., bK-1} in M2,
with an additional node behind, i.e., a * 1+, the
reception rates of these nodes are higher than the same
nodes in M1:

Rbi(A'12) > Rbi(Al1), Vi =1,2,...,K -1. (15)
Now, we study the case when a*M±i bk for

some bk E {bl,... ,b }. Similar to the first case,
with an additional transmitting node a*M +l, the nodes
{b, ... , bk I} in M2 have higher reception rates com-
pared to those in M1, i.e.,

Rbi(Al2) > Rbi 41), Vi =1,2, ...,k -1. (16)

For nodes {bk+,..,bK}, there is no change in the
reception rate because each of them has exactly the same
nodes behind them in both M2 and M1. So,

Rbi(M22) = Rbi(M1) Vi =k+l,k+2, ...,K. (17)

A/I2 = {rm, , .**, MIM2 1} (19)

where nM = D and IMlI not necessarily equals IM21.
In other words, RDF(M2) > RDF(M1).

Proof: [Proof for Lemma 4] First of all, we consider
the case IMlI = IM2 1. The results follows immediately
from Lemma 3. Second, we consider IM1 > IM21.
We consider first M2 nodes in A 1, i.e., M', =

{ n, m2, ..., r,mM2 I}- Then,

RDF(M2) > RDF(M1) > RDF(M 1)- (20)

The first inequality is obtained by applying Lemma 3.
Al2 and MA are of the same length. The former is
formed using the NNA while the latter is not. The
second inequality can be argued as follows. The first
IA21 nodes in both routes MA and Al1 are identical.
Hence the reception rates are the same. However, there
are additional nodes in Al1 whose reception rate might
be lower than RDF(M1). Hence, the rate supported by
M1 can only be higher than that of A1.

Lastly, consider IlM21 > IMl. We replace the trans-
mitting nodes in Al1 with nearest neighbors and obtain

Al3 {m,m2, ...* i**, l,iMi = D}. (21)
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Note that mrnM might not be the nearest neighbor.
Clearly, using Lemma 2, RDF(M 3) > RDF(M 1). Now,

RDF(M2)

min{Rm2(M2)2 * Rm l 11 (AM2), Rm (A/2)
,Rm (J' 2),mRm (A/I2) RD(A42)},

(22a)

> min{Rm2(M3), Rm* 1-l 3),RD(M3)
(22b)

RDF(M3) > RDF(M 1). (22c)

The inequality in (22b) is because in M2,
{mlm I ... 21l} are added to {ml, ,mIMlI_l}
before D. A necessary condition for this is

Pmn > PmD, Vm E {m1 ... mi1W},
Vn E {m M*** M*21}, (23)

with at least one strict inequality for each n. Hence,
Rn,(M2) > RD(M3),Vn c {mml 1M }
With additional nodes transmitting to D in M2,
RD(M2) > RD(M3). Hence, we have Lemma 4. D

Proof: [Proof for Theorem 1] From Lemma 4, we
know that if the NNA terminates normally, the route
(from the source to the destination) formed using the
NNA can support transmission rates as high as any other
route. In other words, the NNA finds a route that supports
the highest rate achievable by DF. Theorem 1 follows.

.
Remark 8: We note the NNA terminates normally if

and only if a unique nearest neighbor exists at each step.
In the next section, we extend the NNA to an algorithm
which terminates normally given any network topology.

V. THE NEAREST NEIGHBOR SET ALGORITHM

In this section, we modify the NNA so that it ter-
minates normally in any multiple node wireless net-
work with a single source and a single destination. We
term this algorithm the nearest neighbor set algorithm
(NNSA). First, we define the nearest neighbor set.

Definition 4: The nearest neighbor set g
{ni,n2, ...},nINI} with respect to route M = {mmnIn2
..., mIMI} is defined as the smallest set A'\ where each
n c g\ C S \ M satisfies the following condition.

Pmn > Pma, Vm E M, Va E S \ (M u A\), (24)
with at least one strict inequality for every pair of
(n,a) E {(n,a) :n c A,acS\(MU An)}.
Now we describe the NNSA.

Algorithm 2 (NNSA):
1) Starting with the source node, we have M = {1}.
2) Find the nearest neighbor set .A. The original route
M branches out to gJAj new routes as follows:

(25)

3) For each new route in (25), step 2 is repeated until
the destination is added to all routes.

When the algorithm terminates, we end up with many
routes from the source to the destination. We term these
routes NNSA candidates. We calculate the supported rate
of each candidate and choose the one which gives the
highest supported rate. The following theorem says that
any NNSA candidate that gives the highest supported
rate is an optimal route for DF.

Theorem 2: Consider a single-source single-
destination multiple node wireless network. The
NNSA candidate routes that give the highest supported
rate are optimal for DF.

Proof: [Sketch of proof for Theorem 2] Using
the technique used in the proof of Theorem 1, we
can show that adding a node that does not belong
to the nearest neighbor set can only be suboptimal.
We can always replace that node with one from the
nearest neighbor set and obtain an equal or higher
rate. In other words, we can show that the supported
rate of M1 = in,m2,..., mrnM,_,D}, with one or
more nodes in {m2,...,mjM.j} not from the nearest
neighbor set, is lower or equal to the supported rate
of M2 = {1,m2 .. mM21-' D}, where all nodes in
M2 are added according to the NNSA. In other words,
RDF(M2) > RDF(M1)-
The NNSA finds all possible routes for which every

node is added from the nearest neighbor set. Hence
one or more of the NNSA candidates must achieve the
highest rate achievable by DF. This gives us Theorem 2.

U
Remark 9: We can show that a shortest optimal

route, defined as some MDRO E QDF, s.t. |MD <
M ,VM E QDF, is contained in one of the NNSA
candidates that supports Rma.
Remark 10: The NNSA might output optimal routes

that include more nodes from the network unnecessarily.
In other words, shorter optimal routes exist. However,
from Remark 9, we can find the shortest optimal route
by pruning the optimal routes output by the NNSA.

VI. COMPLEXITY OF NNSA

With the NNSA, we can now search for the opti-
mal route in the NNSA candidate set, as compared to
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searching in IlJ(S) using brute force. The number of
candidates determines the number of routes whose rate
we need to calculate to find optimal routes for DF. We
note that the size of the NNSA candidate set might still,
in the worst case, equal TII(S) . Using brute force, the
number of permutations we need to check is ILI(S)l =

(D-2) + (D-2) +... (D 2) = 0 ((D- 1)!), where
D is the total number of nodes in the network and
(n r_ nx(n-l)x ...xl

Vk (n-kk)x(n-k-1)x... x
We ran the NNSA on 10000 randomly generated

networks with a varying number of nodes uniformly
distributed in a Imx Im square area. The source, relays
and destination were randomly assigned. On average,
half of the NNSA candidate set sizes were less than
0.715% of the size of Il(S) for the 8-node channel and
less than 0.253% for the 11-node channel.
We note that the average size of the NNSA candidate

set does grow factorially with the number of nodes.
However this does increase the range of finite size
networks for which we can find optimal routes. Further-
more, the NNSA provides insights for designing heuristic
algorithms to find good routes for DF based codes. In
the next section, we propose heuristic algorithms which
find routes in polynomial time.
Remark 1]: The NNSA builds routes from the source.

Relays are added to the route regardless of where the
destination is. We will use this observation in designing
heuristic algorithms.

VII. HEURISTIC ALGORITHMS

In the NNSA, the optimal route is constructed by
adding the "next hop" node one by one to the partial
route. The node to be added is from the nearest neighbor
set. If the nearest neighbor set contains more than one
node, the current route branches to more than one route,
leading to a possibly large NNSA candidate set size.

To avoid this, we consider a heuristic approach that
starts from the source node and repeatedly adds only one
"good" candidate from the nearest neighbor set until the
destination is reached. For the choice of the next hop
node, we consider the node which receives the largest
sum of received power from all the node in the existing
route. We call this the maximum sum-of-received-power
algorithm (MSPA). By choosing only one node to be
added to the partial route, we prevent the algorithm from
branching out to multiple routes. This heuristic approach
yields only one route, regardless of the network size. We
now explicitly describe the MSPA.

Algorithm 3 (MSPA):
1) Start with the source node: M {1}.

2) For every node t c S\M, find the sum of received
power from all nodes in M to t, EicM Pit

3) Let a* be any node with the highest sum of re-
ceived power, i.e., EieM Pia* > EjeM Pjt, Vt C
S \ M. Append node a* to the route: MA
M U {a*}.

4) Repeat steps 2-3 until the destination is added to
the route.

Remark 12: Assuming that the value of the previ-
ous sum-of-received-power computations are cached, the
complexity of step 2 in MSPA is O(D) because there are
at most (D -1) nodes not in the route. The complexity
of the comparisons in step 3 is 0(D). Steps 2-3 are
repeated at most (D -1) times, giving a worst case
complexity of the MSPA of O(D2). Recall that D = IS .

It turns out that the MSPA is optimal if the nodes are
restricted to sending independent codewords, as proven
in the following theorem.

Theorem 3: In a single-source single-destination mul-
tiple node wireless network in which the nodes send
independent codewords, the MSPA route is optimal for
DF.

Proof: [Proof for Theorem 3] Consider an opti-
mal route AM1 = {m, m* ....,*mt* f*. }

Suppose that the first k nodes of the MSPA route
are the same as this optimal route but the (k + 1)-
th node is different, i.e., the MSPA route is M2
fm* m* ... m* a....where a i m l.

Since a is added to the route by MSPA, a necessary
condition is iPm*a > 1PmJmTn So,

Ra(M2) > Rm+I(M1).
Now, consider the case where a rm?, Vi

2,..., IM1. We add a to M1 and obtain
fm* M*,.. ,M* a M* ml }. Then,

RmT (M3) = RmT (M1), i

Ra(M3) > Rm+ (MI)
RmT, (M3) > RmT- (M1), i

(26)

2 ...,~k (27a)
(27b)

k+ 1,...,MIM. (27c)

So, RDF (M3) > RDF(M 1).
Suppose a = mr, for some n c {k+2,..., M}.

We swap the position of a and obtain M4
IX2: * km,,+l, **.,n-I mn+lXmM}

Then,

Rm*(M4) =Rm*(Mj):i) = 2,...,k,n+ 1,..., iM
(28a)

Ra(M4) > Rmk+l (MiI)
Rm,n(M4)>RRmn,(M1), i =k+ 1,...,n-1.

(28b)

(28c)
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So, RDF(M4) > RDF(M1))
In summary, we choose an optimal route. Starting

from the second node, we compare the optimal route
with the MSPA route. If the nodes are different, we insert
(or swap, if the node is in the optimal route but at a
different position) the node in the MSPA route to the
optimal route to obtain a new optimal route. Repeat this
by comparing the new optimal route to the MSPA route
and changing the first node that differ until the MSPA is
contained in an optimal route. Then, we have Theorem 3.

U
Remark 13: However, unlike the NNA and the

NNSA, the MSPA does not output an optimal route
when the nodes are allowed to send arbitrarily corre-
lated codewords. Consider a four-node network with
node coordinates 1(0,0), 2(0.418,0), 3(0.209,0.6755), and
4(0.995,0). Assume Pi = 1, Ni = 1, r = 1, r1 = 2.
The MSPA route is M1 = {1, 2, 4}. The NNSA outputs
M1 and M2 = {1, 2. 3. 4}. It is easy to compute that
RDF(M1) = 1.30826 and RDF(M2) = 1.31576.

VIII. DF WITH LDPC CODES

In the previous section, we computed achievable rates
of different strategies and routes based on an informa-
tion theoretic approach. In this section, we compare
the different strategies and routes in a line network
using practical low density parity check (LDPC) codes
[12][13] with incremental redundancy. The aims of this
section are:

1) To illustrate that DF on the multiple relay channel
is implementable.

2) To demonstrate that DF performs better than MH
under certain network topologies.

3) To show that routing backward (away from the
destination) can be good in DE

4) To demonstrate that the NNSA route performs
better than other routes using DF.

From Fig. 3, we see that for a given route, DF
performs better than MH. An interesting observation is
that routing backward helps in DF but not MH. We find
that the NNSA route (which is also the MSPA route),
i.e., {1, 2, 3, 4}, achieves the lowest BER compared to
other routes using DF.
Remark 14: We note that the total transmit energy

differs depending on the length of the route. One might
argue that route {1, 4}, though having a higher BER,
is better as only 1/3 power is consumed compared to
route { 1, 2, 3, 4}. However, we stress that this paper finds
a route that maximizes the transmission rate, given that
each node must transmit within a given power constraint.

Oimn 0.5m

0 0O 0.5m

(a) Network topology.

LDPC in 4-node network. 1(0,0.5) 2(0,0.4) 3(0,1) 4(0,1.5)
1

0.1

LC
co

0.01

0.001

1 e-04

1 e-05
0 1 2 3 4 5 6 7 8

Eb/No (dB)

(b) Information bit error rate (BER) versus transmit SNR

Fig. 3. Performance of different strategies on different routes in a
4-node network.

Whether or not the node transmits, it is not important in
the route comparison.
Remark 15: We plotted BER versus SNR in Fig. 3.

If the maximum raw channel data rate (in bps) is T,max,
then the throughput is 4 = (1 -PER) Tmax, where PER
is the packet error rate and depends on the BER and the
packet size. In simulations, we found that packet error
rate (PER) had the same behavior as BER.

IX. CONCLUDING REMARKS

We first showed that DF gives a significant trans-
mission rate gain over MH, for an arbitrary route in
the wireless network. We presented an algorithm, the
nearest neighbor set algorithm (NNSA), to find optimal
routes, which maximize the rates achievable by DF.
As this algorithm, in the worst case, runs in factorial
time, we designed a heuristic algorithm, the maximum
sum-of-received-power algorithm (MSPA), that runs in
polynomial time. We showed that the MSPA finds an
optimal route when the nodes can only send independent
codewords. However, unlike the NNA and the NNSA, the
MSPA does not find an optimal route when the nodes
are allowed to send arbitrarily correlated codewords.
We implemented DF on practical networks using LDPC
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codes with incremental redundancy to compare different
routes.
We would like to highlight that for a given route, the

choice of coding strategies, be it MH or DF, does not
affect the spatial re-use of the system. In both strategies,
the nodes in the route (except the destination) transmit
at the same power level. The difference lies in how the
nodes decode the data.
We also note that there are some practical problems

in implementing DF in large networks. First, since real-
world systems have finite transmit power constraints,
nodes have a finite communication range, beyond which
they cannot be heard. Second, large networks may be
distributed over a wide area and cooperation over large
distances may not be feasible. The solution is to partition
the network into clusters and perform cooperative coding
locally in the cluster, e.g., local DF, in which only nodes
in a cluster cooperate with each other.
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